These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7976659)

  • 41. [Interaction between neurons and astrocytes involved in brain regulatory function as assessed by in vitro brain ischemia models].
    Watanabe Y; Hara I; Li J; Matsumiya T
    Nihon Yakurigaku Zasshi; 1997 Mar; 109(3):119-28. PubMed ID: 9108560
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Is the swelling in brain edema isotropic or anisotropic?
    Kuroiwa T; Ueki M; Chen Q; Ichinose S; Okeda R
    Acta Neurochir Suppl (Wien); 1994; 60():155-7. PubMed ID: 7976532
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Roles of metabotropic glutamate receptors in glial function and glial-neuronal communication.
    Winder DG; Conn PJ
    J Neurosci Res; 1996 Oct; 46(2):131-7. PubMed ID: 8915890
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Release of glutamate and of free fatty acids in vasogenic brain edema.
    Baethmann A; Maier-Hauff K; Schürer L; Lange M; Guggenbichler C; Vogt W; Jacob K; Kempski O
    J Neurosurg; 1989 Apr; 70(4):578-91. PubMed ID: 2564431
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Identification of the volume-sensitive organic osmolyte/anion channel in human glial cells.
    Jackson PS; Madsen JR
    Pediatr Neurosurg; 1997 Dec; 27(6):286-91. PubMed ID: 9655142
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neuron glial communication at synapses: insights from vertebrates and invertebrates.
    Murai KK; Van Meyel DJ
    Neuroscientist; 2007 Dec; 13(6):657-66. PubMed ID: 17911218
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Non-vesicular release of glutamate from glial cells by reversed electrogenic glutamate uptake.
    Szatkowski M; Barbour B; Attwell D
    Nature; 1990 Nov; 348(6300):443-6. PubMed ID: 2247147
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of neuroexcitation in development of blood-brain barrier and oedematous changes following cerebral ischaemia and traumatic brain injury.
    Saito N; Chang C; Kawai K; Joó F; Nowak TS; Mies G; Ikeda J; Nagashima G; Ruetzler C; Lohr J
    Acta Neurochir Suppl (Wien); 1990; 51():186-8. PubMed ID: 1982478
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Predominance of cellular edema in traumatic brain swelling in patients with severe head injuries.
    Marmarou A; Signoretti S; Fatouros PP; Portella G; Aygok GA; Bullock MR
    J Neurosurg; 2006 May; 104(5):720-30. PubMed ID: 16703876
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vesicular GABA release delays the onset of the Purkinje cell terminal depolarization without affecting tissue swelling in cerebellar slices during simulated ischemia.
    Brady JD; Mohr C; Rossi DJ
    Neuroscience; 2010 Jun; 168(1):108-17. PubMed ID: 20226232
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Three distinct roles of aquaporin-4 in brain function revealed by knockout mice.
    Verkman AS; Binder DK; Bloch O; Auguste K; Papadopoulos MC
    Biochim Biophys Acta; 2006 Aug; 1758(8):1085-93. PubMed ID: 16564496
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Pathophysiology of traumatic brain edema. Findings and hypotheses].
    Baethmann A; Brendel W; Koczorek KR; Enzenbach R
    Dtsch Med Wochenschr; 1970 May; 95(18):1020-4. PubMed ID: 4912861
    [No Abstract]   [Full Text] [Related]  

  • 53. Differential behavior of glial and neuronal cells exposed to hypotonic solution.
    Tomita M; Fukuuchi Y; Terakawa S
    Acta Neurochir Suppl (Wien); 1994; 60():31-3. PubMed ID: 7976575
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma.
    Fitch MT; Doller C; Combs CK; Landreth GE; Silver J
    J Neurosci; 1999 Oct; 19(19):8182-98. PubMed ID: 10493720
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of glial cells in epilepsy.
    Heuser K; Szokol K; Taubøll E
    Tidsskr Nor Laegeforen; 2014 Jan; 134(1):37-41. PubMed ID: 24429754
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glutamatergic neurotransmission and protein kinase C play a role in neuron-glia communication during the development of methamphetamine-induced psychological dependence.
    Miyatake M; Narita M; Shibasaki M; Nakamura A; Suzuki T
    Eur J Neurosci; 2005 Sep; 22(6):1476-88. PubMed ID: 16190901
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glutamate and taurine are increased in ventricular cerebrospinal fluid of severely brain-injured patients.
    Stover JF; Morganti-Kosmann MC; Lenzlinger PM; Stocker R; Kempski OS; Kossmann T
    J Neurotrauma; 1999 Feb; 16(2):135-42. PubMed ID: 10098958
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetics of glial glutamine efflux and the mechanism of neuronal uptake studied in vivo in mildly hyperammonemic rat brain.
    Kanamori K; Ross BD
    J Neurochem; 2006 Nov; 99(4):1103-13. PubMed ID: 17081141
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Protective effect of glial cells against lipopolysaccharide-mediated blood-brain barrier injury.
    Descamps L; Coisne C; Dehouck B; Cecchelli R; Torpier G
    Glia; 2003 Apr; 42(1):46-58. PubMed ID: 12594736
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Free fatty acid liberation and cellular swelling during cerebral ischemia: the role of excitatory amino acids.
    Katayama Y; Kawamata T; Maeda T; Tsubokawa T
    Acta Neurochir Suppl (Wien); 1994; 60():242-5. PubMed ID: 7976556
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.