These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7977576)

  • 1. Short-wavelength automated perimetry without lens density testing.
    Sample PA; Martinez GA; Weinreb RN
    Am J Ophthalmol; 1994 Nov; 118(5):632-41. PubMed ID: 7977576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incidence and prevalence of short wavelength automated perimetry deficits in ocular hypertensive patients.
    Demirel S; Johnson CA
    Am J Ophthalmol; 2001 Jun; 131(6):709-15. PubMed ID: 11384565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function evaluation (SAFE): I. criteria for glaucomatous visual field loss using standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP).
    Johnson CA; Sample PA; Cioffi GA; Liebmann JR; Weinreb RN
    Am J Ophthalmol; 2002 Aug; 134(2):177-85. PubMed ID: 12140023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frequency doubling technology perimetry for detection of visual field progression in glaucoma: a pointwise linear regression analysis.
    Liu S; Yu M; Weinreb RN; Lai G; Lam DS; Leung CK
    Invest Ophthalmol Vis Sci; 2014 May; 55(5):2862-9. PubMed ID: 24595388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of long-term variability for standard and short-wavelength automated perimetry in stable glaucoma patients.
    Blumenthal EZ; Sample PA; Zangwill L; Lee AC; Kono Y; Weinreb RN
    Am J Ophthalmol; 2000 Mar; 129(3):309-13. PubMed ID: 10704545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma.
    Sample PA; Bosworth CF; Blumenthal EZ; Girkin C; Weinreb RN
    Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1783-90. PubMed ID: 10845599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of high-pass resolution perimetry and standard automated perimetry in glaucoma.
    Martinez GA; Sample PA; Weinreb RN
    Am J Ophthalmol; 1995 Feb; 119(2):195-201. PubMed ID: 7832226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asymmetries in the normal short-wavelength visual field: implications for short-wavelength automated perimetry.
    Sample PA; Irak I; Martinez GA; Yamagishi N
    Am J Ophthalmol; 1997 Jul; 124(1):46-52. PubMed ID: 9222232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of standard automated perimetry, frequency-doubling technology perimetry, and short-wavelength automated perimetry for detection of glaucoma.
    Liu S; Lam S; Weinreb RN; Ye C; Cheung CY; Lai G; Lam DS; Leung CK
    Invest Ophthalmol Vis Sci; 2011 Sep; 52(10):7325-31. PubMed ID: 21810975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining structural and functional testing for detection of glaucoma.
    Shah NN; Bowd C; Medeiros FA; Weinreb RN; Sample PA; Hoffmann EM; Zangwill LM
    Ophthalmology; 2006 Sep; 113(9):1593-602. PubMed ID: 16949444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Automated perimetry in patients with primary congenital glaucoma].
    Lopes Filho JG; Betinjane AJ; Carvalho CA
    Arq Bras Oftalmol; 2007; 70(1):37-40. PubMed ID: 17505716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of methods for automated Hemifield analysis in perimetry.
    Asman P; Heijl A
    Arch Ophthalmol; 1992 Jun; 110(6):820-6. PubMed ID: 1596231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topography of the frequency doubling perimetry visual field compared with that of short wavelength and achromatic automated perimetry visual fields.
    Landers J; Sharma A; Goldberg I; Graham S
    Br J Ophthalmol; 2006 Jan; 90(1):70-4. PubMed ID: 16361671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying glaucomatous vision loss with visual-function-specific perimetry in the diagnostic innovations in glaucoma study.
    Sample PA; Medeiros FA; Racette L; Pascual JP; Boden C; Zangwill LM; Bowd C; Weinreb RN
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3381-9. PubMed ID: 16877406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flicker defined form perimetry in glaucoma suspects with normal achromatic visual fields.
    Reznicek L; Lamparter J; Vogel M; Kampik A; Hirneiß C
    Curr Eye Res; 2015 Jul; 40(7):683-9. PubMed ID: 25207744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorometry of the crystalline lens for correcting blue-on-yellow perimetry results.
    Teesalu P; Airaksinen PJ; Tuulonen A; Nieminen H; Alanko H
    Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):697-703. PubMed ID: 9071224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selecting visual field tests and assessing visual field deterioration in glaucoma.
    Nouri-Mahdavi K
    Can J Ophthalmol; 2014 Dec; 49(6):497-505. PubMed ID: 25433738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting conversion to glaucoma using standard automated perimetry and frequency doubling technology.
    Takahashi G; Demirel S; Johnson CA
    Graefes Arch Clin Exp Ophthalmol; 2017 Apr; 255(4):797-803. PubMed ID: 28110356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diagnostic value of short-wavelength automated perimetry.
    Johnson CA
    Curr Opin Ophthalmol; 1996 Apr; 7(2):54-8. PubMed ID: 10163323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of functional visual field loss by automated static perimetry.
    Frisén L
    Acta Ophthalmol; 2014 Dec; 92(8):805-9. PubMed ID: 24698019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.