BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7978276)

  • 21. Dual role of calsequestrin as substrate and inhibitor of casein kinase-1 and casein kinase-2.
    Salvatori S; Furlan S; Meggio F
    Biochem Biophys Res Commun; 1994 Jan; 198(1):144-9. PubMed ID: 8292016
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel and simple method to assay the activity of individual protein kinases in a crude tissue extract.
    Goueli BS; Hsiao K; Tereba A; Goueli SA
    Anal Biochem; 1995 Feb; 225(1):10-7. PubMed ID: 7778758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amino acid sequence of a region on the glycogen-binding subunit of protein phosphatase-1 phosphorylated by cyclic AMP-dependent protein kinase.
    Caudwell FB; Hiraga A; Cohen P
    FEBS Lett; 1986 Jan; 194(1):85-90. PubMed ID: 3000826
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification and characterization of cAMP-dependent protein kinase and its possible direct interactions with protein phosphatase-1 in marine dinoflagellates.
    Dawson JF; Wang KH; Holmes CF
    Biochem Cell Biol; 1996; 74(4):559-67. PubMed ID: 8960362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phosphorylative neuromodulation of the regulatory subunit of cyclic AMP-dependent protein kinase type II in skeletal muscle.
    McLane JA; Squinto SP; Yeoh HC; Held IR
    J Neurosci Res; 1985; 14(2):229-38. PubMed ID: 2995690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphorylation of the phosphatase modulator subunit (inhibitor-2) by casein kinase-1. Identification of the phosphorylation sites.
    Agostinis P; Marin O; James P; Hendrix P; Merlevede W; Vandenheede JR; Pinna LA
    FEBS Lett; 1992 Jun; 305(2):121-4. PubMed ID: 1319929
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphorylation of the glycogen-binding subunit of protein phosphatase-1G in response to adrenalin.
    MacKintosh C; Campbell DG; Hiraga A; Cohen P
    FEBS Lett; 1988 Jul; 234(1):189-94. PubMed ID: 2839360
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorylation of the glycogen-binding subunit of protein phosphatase-1G by cyclic-AMP-dependent protein kinase promotes translocation of the phosphatase from glycogen to cytosol in rabbit skeletal muscle.
    Hiraga A; Cohen P
    Eur J Biochem; 1986 Dec; 161(3):763-9. PubMed ID: 3024984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dephosphorylation of rabbit skeletal muscle glycogen synthase (phosphorylated by cyclic AMP-independent synthase kinase 1) by phosphatases.
    Ahmad Z; Huang KP
    J Biol Chem; 1981 Jan; 256(2):757-60. PubMed ID: 6256366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphorylation of rabbit skeletal muscle glycogen synthase by cyclic AMP-dependent protein kinase and dephosphorylation of the synthase by phosphatases.
    Huang KP; Huang FL
    J Biol Chem; 1980 Apr; 255(7):3141-7. PubMed ID: 6244308
    [No Abstract]   [Full Text] [Related]  

  • 31. Regulation of ATP-Mg-dependent protein phosphatase.
    Merlevede W; Vandenheede JR; Goris J; Yang SD
    Curr Top Cell Regul; 1984; 23():177-215. PubMed ID: 6327192
    [No Abstract]   [Full Text] [Related]  

  • 32. Phosphoserine as a recognition determinant for glycogen synthase kinase-3: phosphorylation of a synthetic peptide based on the G-component of protein phosphatase-1.
    Fiol CJ; Haseman JH; Wang YH; Roach PJ; Roeske RW; Kowalczuk M; DePaoli-Roach AA
    Arch Biochem Biophys; 1988 Dec; 267(2):797-802. PubMed ID: 2850771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of three in vivo phosphorylation sites on the glycogen-binding subunit of protein phosphatase 1 from rabbit skeletal muscle, and their response to adrenaline.
    Dent P; Campbell DG; Caudwell FB; Cohen P
    FEBS Lett; 1990 Jan; 259(2):281-5. PubMed ID: 2152882
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fluorometric assay for adenosine 3',5'-cyclic monophosphate-dependent protein kinase and phosphoprotein phosphatase activities.
    Wright DE; Noiman ES; Chock PB; Chau V
    Proc Natl Acad Sci U S A; 1981 Oct; 78(10):6048-50. PubMed ID: 6273844
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthetic peptides as model substrates for the study of the specificity of the polycation-stimulated protein phosphatases.
    Agostinis P; Goris J; Pinna LA; Marchiori F; Perich JW; Meyer HE; Merlevede W
    Eur J Biochem; 1990 Apr; 189(2):235-41. PubMed ID: 2159874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exogenous substrate stimulates autodephosphorylation of cyclic-AMP-dependent protein kinase II.
    Gjertsen BT; Fauske B; Døskeland SO
    Biochem J; 1993 Sep; 294 ( Pt 2)(Pt 2):497-503. PubMed ID: 8396916
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The protein phosphatases involved in cellular regulation. Identification of the inhibitor-2 phosphatases in rabbit skeletal muscle.
    Tonks NK; Cohen P
    Eur J Biochem; 1984 Nov; 145(1):65-70. PubMed ID: 6092084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rabbit kidney cortex phosphorylase phosphatases: evidence for complexes between high molecular weight forms and heat-stable inhibitor proteins.
    Mellgren RL; Schlender KK
    J Cyclic Nucleotide Res; 1982; 8(1):27-37. PubMed ID: 6290551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activity measurement of protein kinase and protein phosphatase by microchip phosphate-affinity electrophoresis.
    Han A; Hosokawa K; Maeda M
    Anal Biochem; 2012 Feb; 421(2):782-4. PubMed ID: 22155052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a microplate-based, electrophoretic fluorescent protein kinase a assay: comparison with filter-binding and fluorescence polarization assay formats.
    Miick SM; Jalali S; Dwyer BP; Havens J; Thomas D; Jimenez MA; Simpson MT; Zile B; Huss KL; Campbell RM
    J Biomol Screen; 2005 Jun; 10(4):329-38. PubMed ID: 15964934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.