These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7978358)

  • 1. The influence of geometry on the stress distribution in joints--a finite element analysis.
    Eckstein F; Merz B; Schmid P; Putz R
    Anat Embryol (Berl); 1994 Jun; 189(6):545-52. PubMed ID: 7978358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of subchondral bone adaptation to mechanical loading in an incongruous joint.
    Jacobs CR; Eckstein F
    Anat Rec; 1997 Nov; 249(3):317-26. PubMed ID: 9372165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphomechanics of the humero-ulnar joint: II. Concave incongruity determines the distribution of load and subchondral mineralization.
    Eckstein F; Merz B; Müller-Gerbl M; Holzknecht N; Pleier M; Putz R
    Anat Rec; 1995 Nov; 243(3):327-35. PubMed ID: 8579252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct comparison of contact areas, contact stress and subchondral mineralization in human hip joint specimens.
    von Eisenhart-Rothe R; Eckstein F; Müller-Gerbl M; Landgraf J; Rock C; Putz R
    Anat Embryol (Berl); 1997 Mar; 195(3):279-88. PubMed ID: 9084826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element study of stress distributions in normal and osteoarthritic knee joints.
    Chantarapanich N; Nanakorn P; Chernchujit B; Sitthiseripratip K
    J Med Assoc Thai; 2009 Dec; 92 Suppl 6():S97-103. PubMed ID: 20120670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Areas of contact in human humero-ulnar joints as a function of pressure, their connection through subchondral mineralization and joint surface morphology of the incisura trochlearis].
    Eckstein F; Löhe F; Steinlechner M; Müller-Gerbl M; Putz R
    Ann Anat; 1993 Dec; 175(6):545-52. PubMed ID: 8297042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A contribution to the functional morphology of articular surfaces.
    Tillmann B
    Norm Pathol Anat (Stuttg); 1978; 34():1-50. PubMed ID: 693316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a subject-specific finite-element model of the equine metacarpophalangeal joint under physiological load.
    Harrison SM; Whitton RC; Kawcak CE; Stover SM; Pandy MG
    J Biomech; 2014 Jan; 47(1):65-73. PubMed ID: 24210848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A finite element model of an idealized diarthrodial joint to investigate the effects of variation in the mechanical properties of the tissues.
    Dar FH; Aspden RM
    Proc Inst Mech Eng H; 2003; 217(5):341-8. PubMed ID: 14558646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanobiological adaptation of subchondral bone as a function of joint incongruity and loading.
    Eckstein F; Jacobs CR; Merz BR
    Med Eng Phys; 1997 Dec; 19(8):720-8. PubMed ID: 9450256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subchondral bone density in the human elbow assessed by computed tomography osteoabsorptiometry: a reflection of the loading history of the joint surfaces.
    Eckstein F; Müller-Gerbl M; Steinlechner M; Kierse R; Putz R
    J Orthop Res; 1995 Mar; 13(2):268-78. PubMed ID: 7722764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological incongruity of the humero-ulnar joint: a functional principle of optimized stress distribution acting upon articulating surfaces?
    Eckstein F; Löhe F; Schulte E; Müller-Gerbl M; Milz S; Putz R
    Anat Embryol (Berl); 1993 Nov; 188(5):449-55. PubMed ID: 8311252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Demonstration of subchondral bone density patterns by three-dimensional CT osteoabsorptiometry as a noninvasive method for in vivo assessment of individual long-term stresses in joints.
    Müller-Gerbl M; Putz R; Kenn R
    J Bone Miner Res; 1992 Dec; 7 Suppl 2():S411-8. PubMed ID: 1485549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cementless socket fixation based on the "press-fit" concept in total hip joint arthroplasty].
    Morscher EW; Widmer KH; Bereiter H; Elke R; Schenk R
    Acta Chir Orthop Traumatol Cech; 2002; 69(1):8-15. PubMed ID: 11951572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analytical model of joint contact.
    Eberhardt AW; Keer LM; Lewis JL; Vithoontien V
    J Biomech Eng; 1990 Nov; 112(4):407-13. PubMed ID: 2273867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Three-dimensional finite element analysis of the effect of the location and diameter of implants on the stress distribution in three-unit implant-supported posterior cantilever fixed partial dentures under dynamic loads].
    Lü J; Liu C; Lan J; Gao X
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2013 Dec; 31(6):552-6. PubMed ID: 24437284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis.
    Chegini S; Beck M; Ferguson SJ
    J Orthop Res; 2009 Feb; 27(2):195-201. PubMed ID: 18752280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress distribution in the trochlear notch. A model of bicentric load transmission through joints.
    Eckstein F; Löhe F; Müller-Gerbl M; Steinlechner M; Putz R
    J Bone Joint Surg Br; 1994 Jul; 76(4):647-53. PubMed ID: 8027157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical implications of humero-ulnar incongruity--finite element analysis and experiment.
    Merz B; Eckstein F; Hillebrand S; Putz R
    J Biomech; 1997 Jul; 30(7):713-21. PubMed ID: 9239551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket.
    Lee WC; Zhang M; Jia X; Cheung JT
    Med Eng Phys; 2004 Oct; 26(8):655-62. PubMed ID: 15471693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.