These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 7978405)
1. Role of nitric oxide and endothelium in rat pial vessel dilation response to isoflurane. Koenig HM; Pelligrino DA; Wang Q; Albrecht RF Anesth Analg; 1994 Nov; 79(5):886-91. PubMed ID: 7978405 [TBL] [Abstract][Full Text] [Related]
2. The role of endothelium and nitric oxide in rat pial arteriolar dilatory responses to CO2 in vivo. Wang Q; Pelligrino DA; Koenig HM; Albrecht RF J Cereb Blood Flow Metab; 1994 Nov; 14(6):944-51. PubMed ID: 7929657 [TBL] [Abstract][Full Text] [Related]
3. Role of nitric oxide, adenosine, N-methyl-D-aspartate receptors, and neuronal activation in hypoxia-induced pial arteriolar dilation in rats. Pelligrino DA; Wang Q; Koenig HM; Albrecht RF Brain Res; 1995 Dec; 704(1):61-70. PubMed ID: 8750962 [TBL] [Abstract][Full Text] [Related]
4. Halothane vasodilation and nitric oxide in rat pial vessels. Koenig HM; Pelligrino DA; Albrecht RF J Neurosurg Anesthesiol; 1993 Oct; 5(4):264-71. PubMed ID: 7504535 [TBL] [Abstract][Full Text] [Related]
5. Nascent EDHF-mediated cerebral vasodilation in ovariectomized rats is not induced by eNOS dysfunction. Xu HL; Santizo RA; Baughman VL; Pelligrino DA Am J Physiol Heart Circ Physiol; 2003 Nov; 285(5):H2045-53. PubMed ID: 12869371 [TBL] [Abstract][Full Text] [Related]
6. Glutamate-induced disruption of the blood-brain barrier in rats. Role of nitric oxide. Mayhan WG; Didion SP Stroke; 1996 May; 27(5):965-9; discussion 970. PubMed ID: 8623120 [TBL] [Abstract][Full Text] [Related]
7. Role of activation of calcium-sensitive K+ channels in NO- and hypoxia-induced pial artery vasodilation. Armstead WM Am J Physiol; 1997 Apr; 272(4 Pt 2):H1785-90. PubMed ID: 9139963 [TBL] [Abstract][Full Text] [Related]
8. Nitric-oxide-dependent pial arteriolar dilation in the female rat: effects of chronic estrogen depletion and repletion. Pelligrino DA; Ye S; Tan F; Santizo RA; Feinstein DL; Wang Q Biochem Biophys Res Commun; 2000 Mar; 269(1):165-71. PubMed ID: 10694495 [TBL] [Abstract][Full Text] [Related]
9. ACh dilates pial arterioles in endothelial and neuronal NOS knockout mice by NO-dependent mechanisms. Meng W; Ma J; Ayata C; Hara H; Huang PL; Fishman MC; Moskowitz MA Am J Physiol; 1996 Sep; 271(3 Pt 2):H1145-50. PubMed ID: 8853353 [TBL] [Abstract][Full Text] [Related]
10. Endothelium-dependent responses of cerebral arterioles to adenosine 5'-diphosphate. Mayhan WG J Vasc Res; 1992; 29(5):353-8. PubMed ID: 1420730 [TBL] [Abstract][Full Text] [Related]
11. Isoflurane and halothane attenuate endothelium-dependent vasodilation in rat coronary microvessels. Park KW; Dai HB; Lowenstein E; Darvish A; Sellke FW Anesth Analg; 1997 Feb; 84(2):278-84. PubMed ID: 9024015 [TBL] [Abstract][Full Text] [Related]
16. Influence of the glia limitans on pial arteriolar relaxation in the rat. Xu HL; Koenig HM; Ye S; Feinstein DL; Pelligrino DA Am J Physiol Heart Circ Physiol; 2004 Jul; 287(1):H331-9. PubMed ID: 14962837 [TBL] [Abstract][Full Text] [Related]
17. Tetrahydrobiopterin, a cofactor for nitric oxide synthase, produces endothelium-dependent dilation of mouse pial arterioles. Rosenblum WI Stroke; 1997 Jan; 28(1):186-9. PubMed ID: 8996510 [TBL] [Abstract][Full Text] [Related]
18. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol. Lapi D; Marchiafava PL; Colantuoni A J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320 [TBL] [Abstract][Full Text] [Related]
19. ADP-induced pial arteriolar dilation in ovariectomized rats involves gap junctional communication. Xu HL; Santizo RA; Baughman VL; Pelligrino DA Am J Physiol Heart Circ Physiol; 2002 Sep; 283(3):H1082-91. PubMed ID: 12181138 [TBL] [Abstract][Full Text] [Related]