BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 7978565)

  • 21. Effects of active compression-decompression resuscitation on myocardial and cerebral blood flow in pigs.
    Lindner KH; Pfenninger EG; Lurie KG; Schürmann W; Lindner IM; Ahnefeld FW
    Circulation; 1993 Sep; 88(3):1254-63. PubMed ID: 8353887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Myocardial effects of ventricular fibrillation in the isolated rat heart.
    Gazmuri RJ; Berkowitz M; Cajigas H
    Crit Care Med; 1999 Aug; 27(8):1542-50. PubMed ID: 10470762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epinephrine and norepinephrine in cardiopulmonary resuscitation. Effects on myocardial oxygen delivery and consumption.
    Lindner KH; Ahnefeld FW; Schuermann W; Bowdler IM
    Chest; 1990 Jun; 97(6):1458-62. PubMed ID: 2347230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Leaning during chest compressions impairs cardiac output and left ventricular myocardial blood flow in piglet cardiac arrest.
    Zuercher M; Hilwig RW; Ranger-Moore J; Nysaether J; Nadkarni VM; Berg MD; Kern KB; Sutton R; Berg RA
    Crit Care Med; 2010 Apr; 38(4):1141-6. PubMed ID: 20081529
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of epinephrine and vasopressin in a pediatric porcine model of asphyxial cardiac arrest.
    Voelckel WG; Lurie KG; McKnite S; Zielinski T; Lindstrom P; Peterson C; Krismer AC; Lindner KH; Wenzel V
    Crit Care Med; 2000 Dec; 28(12):3777-83. PubMed ID: 11153614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest.
    Berg RA; Sanders AB; Kern KB; Hilwig RW; Heidenreich JW; Porter ME; Ewy GA
    Circulation; 2001 Nov; 104(20):2465-70. PubMed ID: 11705826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of epinephrine versus methoxamine on regional myocardial blood flow and defibrillation rates following a prolonged cardiorespiratory arrest in a swine model.
    Brown CG; Katz SE; Werman HA; Luu T; Davis EA; Hamlin RL
    Am J Emerg Med; 1987 Sep; 5(5):362-9. PubMed ID: 3620033
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of standard-dose versus high-dose epinephrine on myocardial high-energy phosphates during ventricular fibrillation and closed-chest CPR.
    Hoekstra JW; Griffith R; Kelley R; Cody RJ; Lewis D; Scheatzle M; Brown CG
    Ann Emerg Med; 1993 Sep; 22(9):1385-91. PubMed ID: 8363112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of epinephrine and vasopressin in a piglet model of prolonged ventricular fibrillation and cardiopulmonary resuscitation.
    Voelckel WG; Lurie KG; McKnite S; Zielinski T; Lindstrom P; Peterson C; Wenzel V; Lindner KH; Benditt D
    Crit Care Med; 2002 May; 30(5):957-62. PubMed ID: 12006787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Blood Pressure- and Coronary Perfusion Pressure-Targeted Cardiopulmonary Resuscitation Improves 24-Hour Survival From Ventricular Fibrillation Cardiac Arrest.
    Naim MY; Sutton RM; Friess SH; Bratinov G; Bhalala U; Kilbaugh TJ; Lampe JW; Nadkarni VM; Becker LB; Berg RA
    Crit Care Med; 2016 Nov; 44(11):e1111-e1117. PubMed ID: 27414479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of norepinephrine on kidney in a swine model of cardiopulmonary resuscitation.
    Han Y; Li CS; Su ZY; Lu Y; Wang SQ
    Am J Emerg Med; 2011 Sep; 29(7):731-7. PubMed ID: 20825880
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of high dose norepinephrine versus epinephrine on cerebral and myocardial blood flow during CPR.
    Hoekstra JW; Van Ligten P; Neumar R; Werman HA; Anderson J; Brown CG
    Resuscitation; 1990 Jun; 19(3):227-40. PubMed ID: 2164246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of remote ischaemic post-conditioning in a pig model of cardiac arrest: A pilot study.
    Albrecht M; Meybohm P; Broch O; Zitta K; Hein M; Gräsner JT; Renner J; Bein B; Gruenewald M
    Resuscitation; 2015 Aug; 93():89-95. PubMed ID: 26051813
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Augmentation of tissue perfusion by a novel compression device increases neurologically intact survival in a porcine model of prolonged cardiac arrest.
    Ikeno F; Kaneda H; Hongo Y; Sakanoue Y; Nolasco C; Emami S; Lyons J; Rezaee M
    Resuscitation; 2006 Jan; 68(1):109-18. PubMed ID: 16325982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cardiovascular function during the postresuscitation phase after cardiac arrest in pigs: a comparison of epinephrine versus vasopressin.
    Prengel AW; Lindner KH; Keller A; Lurie KG
    Crit Care Med; 1996 Dec; 24(12):2014-9. PubMed ID: 8968270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of arrest time and cerebral perfusion pressure during cardiopulmonary resuscitation on cerebral blood flow, metabolism, adenosine triphosphate recovery, and pH in dogs.
    Shaffner DH; Eleff SM; Brambrink AM; Sugimoto H; Izuta M; Koehler RC; Traystman RJ
    Crit Care Med; 1999 Jul; 27(7):1335-42. PubMed ID: 10446829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of a 10-breaths-per-minute versus a 2-breaths-per-minute strategy during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Lurie KG; Yannopoulos D; McKnite SH; Herman ML; Idris AH; Nadkarni VM; Tang W; Gabrielli A; Barnes TA; Metzger AK
    Respir Care; 2008 Jul; 53(7):862-70. PubMed ID: 18593487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of levosimendan on hemodynamics, local cerebral blood flow, neuronal injury, and neuroinflammation after asphyctic cardiac arrest in rats.
    Kelm RF; Wagenführer J; Bauer H; Schmidtmann I; Engelhard K; Noppens RR
    Crit Care Med; 2014 Jun; 42(6):e410-9. PubMed ID: 24633188
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulated mouth-to-mouth ventilation and chest compressions (bystander cardiopulmonary resuscitation) improves outcome in a swine model of prehospital pediatric asphyxial cardiac arrest.
    Berg RA; Hilwig RW; Kern KB; Babar I; Ewy GA
    Crit Care Med; 1999 Sep; 27(9):1893-9. PubMed ID: 10507615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of nitric oxide improves coronary perfusion pressure and return of spontaneous circulation in a porcine cardiopulmonary resuscitation model.
    Krismer AC; Lindner KH; Wenzel V; Rainer B; Mueller G; Lingnau W
    Crit Care Med; 2001 Mar; 29(3):482-6. PubMed ID: 11373408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.