BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 7979319)

  • 1. Pleoanamorphic life cycle of Exophiala (Wangiella) dermatitidis.
    de Hoog GS; Takeo K; Yoshida S; Göttlich E; Nishimura K; Miyaji M
    Antonie Van Leeuwenhoek; 1994; 65(2):143-53. PubMed ID: 7979319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A human isolate of Exophiala (Wangiella) dermatitidis forming a catenate synanamorph that links the genera Exophiala and Cladophialophora.
    de Hoog GS; Takeo K; Göttlich E; Nishimura K; Miyaji M
    J Med Vet Mycol; 1995; 33(5):355-8. PubMed ID: 8544089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Further studies on the phylogenesis of the genus Exophiala and Hortaea.
    Nishimura K; Miyaji M
    Mycopathologia; 1985 Nov; 92(2):101-9. PubMed ID: 4079967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic analysis of ten black yeast species using nuclear small subunit rRNA gene sequences.
    Haase G; Sonntag L; van de Peer Y; Uijthof JM; Podbielski A; Melzer-Krick B
    Antonie Van Leeuwenhoek; 1995 Jul; 68(1):19-33. PubMed ID: 8526477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteome of tolerance fine-tuning in the human pathogen black yeast Exophiala dermatitidis.
    Tesei D; Marzban G; Marchetti-Deschmann M; Tafer H; Arcalis E; Sterflinger K
    J Proteomics; 2015 Oct; 128():39-57. PubMed ID: 26189359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A previously undescribed synanamorph of Wangiella dermatitidis.
    Matsumoto T; Matsuda T; McGinnis MR
    J Med Vet Mycol; 1990; 28(6):437-44. PubMed ID: 2093116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell cycle regulation of polymorphism in Wangiella dermatitidis.
    Szaniszlo PJ; Karuppayil SM; Mendoza L; Rennard RJ
    Arch Med Res; 1993; 24(3):251-61. PubMed ID: 8298274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a novel PCR assay for the identification of the black yeast, Exophiala (Wangiella) dermatitidis from adult patients with cystic fibrosis (CF).
    Nagano Y; Elborn JS; Millar BC; Goldsmith CE; Rendall J; Moore JE
    J Cyst Fibros; 2008 Nov; 7(6):576-80. PubMed ID: 18571996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Glacier to Sauna: RNA-Seq of the Human Pathogen Black Fungus Exophiala dermatitidis under Varying Temperature Conditions Exhibits Common and Novel Fungal Response.
    Blasi B; Tafer H; Tesei D; Sterflinger K
    PLoS One; 2015; 10(6):e0127103. PubMed ID: 26061625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WdStuAp, an APSES transcription factor, is a regulator of yeast-hyphal transitions in Wangiella (Exophiala) dermatitidis.
    Wang Q; Szaniszlo PJ
    Eukaryot Cell; 2007 Sep; 6(9):1595-605. PubMed ID: 17693595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for two cell division cycle (CDC) genes that govern yeast bud emergence in the pathogenic fungus Wangiella dermatitidis.
    Cooper CR; Szaniszlo PJ
    Infect Immun; 1993 May; 61(5):2069-81. PubMed ID: 8478096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of calcium to the regulation of polymorphism in Wangiella (Exophiala) dermatitidis.
    Karuppayil SM; Szaniszlo PJ
    J Med Vet Mycol; 1997; 35(6):379-88. PubMed ID: 9467104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutritional physiology of type isolates of currently accepted species of Exophiala and Phaeococcomyces.
    de Hoog GS; Gerritis van den Ende AH; Uijthof JM; Untereiner WA
    Antonie Van Leeuwenhoek; 1995 Jul; 68(1):43-9. PubMed ID: 8526480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA interference of WdFKS1 mRNA expression causes slowed growth, incomplete septation and loss of cell wall integrity in yeast cells of the polymorphic, pathogenic fungus Wangiella (Exophiala) dermatitidis.
    Guo P; Szaniszlo PJ
    Med Mycol; 2011 Nov; 49(8):806-18. PubMed ID: 21469912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of a constitutively active Cdc42 homologue promotes development of sclerotic bodies but represses hyphal growth in the zoopathogenic fungus Wangiella (Exophiala) dermatitidis.
    Ye X; Szaniszlo PJ
    J Bacteriol; 2000 Sep; 182(17):4941-50. PubMed ID: 10940039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutritional physiology and selective isolation of Exophiala dermatitidis.
    de Hoog GS; Haase G
    Antonie Van Leeuwenhoek; 1993; 64(1):17-26. PubMed ID: 8273999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms.
    Robertson KL; Mostaghim A; Cuomo CA; Soto CM; Lebedev N; Bailey RF; Wang Z
    PLoS One; 2012; 7(11):e48674. PubMed ID: 23139812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytolocalization of the class V chitin synthase in the yeast, hyphal and sclerotic morphotypes of Wangiella (Exophiala) dermatitidis.
    Abramczyk D; Park C; Szaniszlo PJ
    Fungal Genet Biol; 2009 Jan; 46(1):28-41. PubMed ID: 18992354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical and mycological spectra of Wangiella dermatitidis infections.
    Matsumoto T; Matsuda T; McGinnis MR; Ajello L
    Mycoses; 1993; 36(5-6):145-55. PubMed ID: 8264710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofilm formation of the black yeast-like fungus Exophiala dermatitidis and its susceptibility to antiinfective agents.
    Kirchhoff L; Olsowski M; Zilmans K; Dittmer S; Haase G; Sedlacek L; Steinmann E; Buer J; Rath PM; Steinmann J
    Sci Rep; 2017 Feb; 7():42886. PubMed ID: 28211475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.