These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 7979368)
1. Two-dimensional NMR studies of the flavin binding site of Desulfovibrio vulgaris flavodoxin in its three redox states. Peelen S; Vervoort J Arch Biochem Biophys; 1994 Nov; 314(2):291-300. PubMed ID: 7979368 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the electrostatic effect of the 5'-phosphate of the flavin mononucleotide cofactor on the oxidation--reduction potentials of the flavodoxin from desulfovibrio vulgaris (Hildenborough). Zhou Z; Swenson RP Biochemistry; 1996 Sep; 35(38):12443-54. PubMed ID: 8823179 [TBL] [Abstract][Full Text] [Related]
3. pH-dependent spectroscopic changes associated with the hydroquinone of FMN in flavodoxins. Yalloway GN; Mayhew SG; Malthouse JP; Gallagher ME; Curley GP Biochemistry; 1999 Mar; 38(12):3753-62. PubMed ID: 10090764 [TBL] [Abstract][Full Text] [Related]
4. Modulation of the redox potentials of FMN in Desulfovibrio vulgaris flavodoxin: thermodynamic properties and crystal structures of glycine-61 mutants. O'Farrell PA; Walsh MA; McCarthy AA; Higgins TM; Voordouw G; Mayhew SG Biochemistry; 1998 Jun; 37(23):8405-16. PubMed ID: 9622492 [TBL] [Abstract][Full Text] [Related]
5. Crystallographic investigation of the role of aspartate 95 in the modulation of the redox potentials of Desulfovibrio vulgaris flavodoxin. McCarthy AA; Walsh MA; Verma CS; O'Connell DP; Reinhold M; Yalloway GN; D'Arcy D; Higgins TM; Voordouw G; Mayhew SG Biochemistry; 2002 Sep; 41(36):10950-62. PubMed ID: 12206666 [TBL] [Abstract][Full Text] [Related]
7. The midpoint potentials for the oxidized-semiquinone couple for Gly57 mutants of the Clostridium beijerinckii flavodoxin correlate with changes in the hydrogen-bonding interaction with the proton on N(5) of the reduced flavin mononucleotide cofactor as measured by NMR chemical shift temperature dependencies. Chang FC; Swenson RP Biochemistry; 1999 Jun; 38(22):7168-76. PubMed ID: 10353827 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of oxidized flavodoxin from a red alga Chondrus crispus refined at 1.8 A resolution. Description of the flavin mononucleotide binding site. Fukuyama K; Matsubara H; Rogers LJ J Mol Biol; 1992 Jun; 225(3):775-89. PubMed ID: 1602481 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 2. Evidence for cooperative conformational changes involving tryptophan 60 in the interaction between the phosphate- and ring-binding subsites. Murray TA; Foster MP; Swenson RP Biochemistry; 2003 Mar; 42(8):2317-27. PubMed ID: 12600199 [TBL] [Abstract][Full Text] [Related]
10. Control of oxidation-reduction potentials in flavodoxin from Clostridium beijerinckii: the role of conformation changes. Ludwig ML; Pattridge KA; Metzger AL; Dixon MM; Eren M; Feng Y; Swenson RP Biochemistry; 1997 Feb; 36(6):1259-80. PubMed ID: 9063874 [TBL] [Abstract][Full Text] [Related]
11. Backbone dynamics of oxidized and reduced D. vulgaris flavodoxin in solution. Hrovat A; Blümel M; Löhr F; Mayhew SG; Rüterjans H J Biomol NMR; 1997 Jul; 10(1):53-62. PubMed ID: 9335116 [TBL] [Abstract][Full Text] [Related]
12. The cumulative electrostatic effect of aromatic stacking interactions and the negative electrostatic environment of the flavin mononucleotide binding site is a major determinant of the reduction potential for the flavodoxin from Desulfovibrio vulgaris [Hildenborough]. Zhou Z; Swenson RP Biochemistry; 1996 Dec; 35(50):15980-8. PubMed ID: 8973168 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen-1, carbon-13, and nitrogen-15 NMR spectroscopy of Anabaena 7120 flavodoxin: assignment of beta-sheet and flavin binding site resonances and analysis of protein-flavin interactions. Stockman BJ; Krezel AM; Markley JL; Leonhardt KG; Straus NA Biochemistry; 1990 Oct; 29(41):9600-9. PubMed ID: 2125478 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of flavin mononucleotide cofactor binding to the Desulfovibrio vulgaris flavodoxin. 1. Kinetic evidence for cooperative effects associated with the binding of inorganic phosphate and the 5'-phosphate moiety of the cofactor. Murray TA; Swenson RP Biochemistry; 2003 Mar; 42(8):2307-16. PubMed ID: 12600198 [TBL] [Abstract][Full Text] [Related]
15. Role of hydrogen bonding interactions to N(3)H of the flavin mononucleotide cofactor in the modulation of the redox potentials of the Clostridium beijerinckii flavodoxin. Bradley LH; Swenson RP Biochemistry; 2001 Jul; 40(30):8686-95. PubMed ID: 11467928 [TBL] [Abstract][Full Text] [Related]
16. Site-directed mutagenesis of tyrosine-98 in the flavodoxin from Desulfovibrio vulgaris (Hildenborough): regulation of oxidation-reduction properties of the bound FMN cofactor by aromatic, solvent, and electrostatic interactions. Swenson RP; Krey GD Biochemistry; 1994 Jul; 33(28):8505-14. PubMed ID: 8031784 [TBL] [Abstract][Full Text] [Related]
17. Crystal structure of flavodoxin from Desulfovibrio desulfuricans ATCC 27774 in two oxidation states. Romero A; Caldeira J; Legall J; Moura I; Moura JJ; Romao MJ Eur J Biochem; 1996 Jul; 239(1):190-6. PubMed ID: 8706707 [TBL] [Abstract][Full Text] [Related]
18. Redox and flavin-binding properties of recombinant flavodoxin from Desulfovibrio vulgaris (Hildenborough). Curley GP; Carr MC; Mayhew SG; Voordouw G Eur J Biochem; 1991 Dec; 202(3):1091-100. PubMed ID: 1765070 [TBL] [Abstract][Full Text] [Related]
19. Properties of the complexes of riboflavin 3',5'-bisphosphate and the apoflavodoxins from Megasphaera elsdenii and Desulfovibrio vulgaris. Vervoort J; van Berkel WJ; Mayhew SG; Müller F; Bacher A; Nielsen P; LeGall J Eur J Biochem; 1986 Dec; 161(3):749-56. PubMed ID: 3792314 [TBL] [Abstract][Full Text] [Related]
20. Comparisons of wild-type and mutant flavodoxins from Anacystis nidulans. Structural determinants of the redox potentials. Hoover DM; Drennan CL; Metzger AL; Osborne C; Weber CH; Pattridge KA; Ludwig ML J Mol Biol; 1999 Dec; 294(3):725-43. PubMed ID: 10610792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]