These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
492 related articles for article (PubMed ID: 7979395)
21. The effect of functional groups on reduction and activation of quinone bioreductive agents by DT-diaphorase. Fourie J; Oleschuk CJ; Guziec F; Guziec L; Fiterman DJ; Monterrosa C; Begleiter A Cancer Chemother Pharmacol; 2002 Feb; 49(2):101-10. PubMed ID: 11862423 [TBL] [Abstract][Full Text] [Related]
22. Peroxynitrite induces long-lived tyrosyl radical(s) in oxyhemoglobin of red blood cells through a reaction involving CO2 and a ferryl species. Minetti M; Scorza G; Pietraforte D Biochemistry; 1999 Feb; 38(7):2078-87. PubMed ID: 10026290 [TBL] [Abstract][Full Text] [Related]
23. Role of hemopexin in protection of low-density lipoprotein against hemoglobin-induced oxidation. Miller YI; Smith A; Morgan WT; Shaklai N Biochemistry; 1996 Oct; 35(40):13112-7. PubMed ID: 8855948 [TBL] [Abstract][Full Text] [Related]
24. Mechanism of autocatalytic oxidation of oxyhemoglobin by nitrite. Kosaka H; Tyuma I; Imaizumi K Biomed Biochim Acta; 1983; 42(11-12):S144-8. PubMed ID: 6326765 [TBL] [Abstract][Full Text] [Related]
25. Reactions of phenoxyl radicals with NADPH-cytochrome P-450 oxidoreductase and NADPH: reduction of the radicals and inhibition of the enzyme. Goldman R; Tsyrlov IB; Grogan J; Kagan VE Biochemistry; 1997 Mar; 36(11):3186-92. PubMed ID: 9115995 [TBL] [Abstract][Full Text] [Related]
26. Role of oxygen and carbon radicals in hemoglobin oxidation. Minetti M; Mallozzi C; Scorza G; Scott MD; Kuypers FA; Lubin BH Arch Biochem Biophys; 1993 Apr; 302(1):233-44. PubMed ID: 8385900 [TBL] [Abstract][Full Text] [Related]
27. One- and two-electron reduction of 2-methyl-1,4-naphthoquinone bioreductive alkylating agents: kinetic studies, free-radical production, thiol oxidation and DNA-strand-break formation. Giulivi C; Cadenas E Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):21-30. PubMed ID: 8037673 [TBL] [Abstract][Full Text] [Related]
28. Pyrogallol red oxidation induced by superoxide radicals: application to evaluate redox cycling of nitro compounds. Faúndez M; Rojas M; Bohle P; Reyes C; Letelier ME; Aliaga ME; Speisky H; Lissi E; López-Alarcón C Anal Biochem; 2011 Dec; 419(2):284-91. PubMed ID: 21945352 [TBL] [Abstract][Full Text] [Related]
29. Redox properties of the lipocalin alpha1-microglobulin: reduction of cytochrome c, hemoglobin, and free iron. Allhorn M; Klapyta A; Akerström B Free Radic Biol Med; 2005 Mar; 38(5):557-67. PubMed ID: 15683711 [TBL] [Abstract][Full Text] [Related]
30. A study on the interaction between hydroxylamine analogues and oxyhemoglobin in intact erythrocytes. Spooren AA; Evelo CT Blood Cells Mol Dis; 2000 Aug; 26(4):373-86. PubMed ID: 11042038 [TBL] [Abstract][Full Text] [Related]
31. Electron paramagnetic resonance study of the generation of reactive oxygen species catalysed by transition metals and quinoid redox cycling by inhalable ambient particulate matter. Valavanidis A; Fiotakis K; Bakeas E; Vlahogianni T Redox Rep; 2005; 10(1):37-51. PubMed ID: 15829110 [TBL] [Abstract][Full Text] [Related]
32. Catalase-like activity of human methemoglobin: a kinetic and mechanistic study. González-Sánchez MI; García-Carmona F; Macià H; Valero E Arch Biochem Biophys; 2011 Dec; 516(1):10-20. PubMed ID: 21964540 [TBL] [Abstract][Full Text] [Related]
33. The rotenone-insensitive reduction of quinones and nitrocompounds by mitochondrial NADH:ubiquinone reductase. Bironaite DA; Cenas NK; Kulys JJ Biochim Biophys Acta; 1991 Oct; 1060(2):203-9. PubMed ID: 1932041 [TBL] [Abstract][Full Text] [Related]
34. [Stabilization of hemoglobin by aldehydes in reactions of autooxidation to methemoglobin]. Stepuro II; Kashko MF Biokhimiia; 1989 Feb; 54(2):244-9. PubMed ID: 2742924 [TBL] [Abstract][Full Text] [Related]
35. Inhibition of erythrocyte superoxide dismutase by diethyldithiocarbamate also results in oxyhemoglobin-catalyzed glutathione depletion and methemoglobin production. Kelner MJ; Alexander NM J Biol Chem; 1986 Feb; 261(4):1636-41. PubMed ID: 3003078 [TBL] [Abstract][Full Text] [Related]
36. FAD semiquinone stability regulates single- and two-electron reduction of quinones by Anabaena PCC7119 ferredoxin:NADP+ reductase and its Glu301Ala mutant. Anusevicius Z; Miseviciene L; Medina M; Martinez-Julvez M; Gomez-Moreno C; Cenas N Arch Biochem Biophys; 2005 May; 437(2):144-50. PubMed ID: 15850554 [TBL] [Abstract][Full Text] [Related]
37. Mechanism of autocatalytic oxidation of oxyhemoglobin by nitrite. An intermediate detected by electron spin resonance. Kosaka H; Imaizumi K; Tyuma I Biochim Biophys Acta; 1982 Apr; 702(2):237-41. PubMed ID: 6282334 [TBL] [Abstract][Full Text] [Related]
38. Reactions of Lesanavičius M; Aliverti A; Šarlauskas J; Čėnas N Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32370303 [TBL] [Abstract][Full Text] [Related]
39. Inhibition by superoxide dismutase of methemoglobin formation from oxyhemoglobin. Lynch RE; Lee R; Cartwright GE J Biol Chem; 1976 Feb; 251(4):1015-9. PubMed ID: 2597 [TBL] [Abstract][Full Text] [Related]
40. Antiplasmodial activity of nitroaromatic and quinoidal compounds: redox potential vs. inhibition of erythrocyte glutathione reductase. Grellier P; Sarlauskas J; Anusevicius Z; Maroziene A; Houee-Levin C; Schrevel J; Cenas N Arch Biochem Biophys; 2001 Sep; 393(2):199-206. PubMed ID: 11556806 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]