These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7979863)

  • 1. Nucleus cuneiformis lesion increases high-voltage spindle incidence in unrestrained rat neocortex.
    Knüpfer M; Bringmann A; Klingberg F
    Arch Ital Biol; 1994 Jul; 132(3):191-7. PubMed ID: 7979863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topographic mapping of the cortical EEG power in the unrestrained rat: peripheral effects of neuroactive drugs.
    Bringmann A
    Arch Ital Biol; 1995 Jan; 133(1):1-16. PubMed ID: 7748058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific invasion of occipital-to-frontal neocortical grafts by axons from the lateral posterior thalamic nucleus consecutive to neonatal lesion of the rat occipital cortex.
    Létang J; Gaillard A; Roger M
    Exp Neurol; 1998 Jul; 152(1):64-73. PubMed ID: 9682013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [EEG correlates of the functional organization of damaged cat brain following restoration of conditioned activity].
    Mordvinov EF
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1981; 31(5):940-9. PubMed ID: 7314914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of lesions in the mesencephalic reticular formation upon conditioned avoidance responses in rat. II. Lesions of the area cuneiformis.
    Mager P; Mager R; Klingberg F
    Biomed Biochim Acta; 1984; 43(10):1145-55. PubMed ID: 6525188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of adrenergic neurotransmission with clonidine aggravates spike-wave seizures and alters activity in the cortex and the thalamus in WAG/Rij rats.
    Sitnikova E; van Luijtelaar G
    Brain Res Bull; 2005 Jan; 64(6):533-40. PubMed ID: 15639550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroencephalographic precursors of spike-wave discharges in a genetic rat model of absence epilepsy: Power spectrum and coherence EEG analyses.
    Sitnikova E; van Luijtelaar G
    Epilepsy Res; 2009 Apr; 84(2-3):159-71. PubMed ID: 19269137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroencephalographic characterization of spike-wave discharges in cortex and thalamus in WAG/Rij rats.
    Sitnikova E; van Luijtelaar G
    Epilepsia; 2007 Dec; 48(12):2296-311. PubMed ID: 18196621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attraction exerted in vivo by grafts of embryonic neocortex on developing thalamic axons.
    Frappé I; Gaillard A; Roger M
    Exp Neurol; 2001 Jun; 169(2):264-75. PubMed ID: 11358441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical stimulations of the basal forebrain and the nucleus cuneiformis differently modulate behavioural activation of freely moving rat.
    Bringmann A; Klingberg F
    Biomed Biochim Acta; 1989; 48(10):781-91. PubMed ID: 2634958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is spontaneous high-voltage rhythmic spike discharge in Long Evans rats an absence-like seizure activity?
    Shaw FZ
    J Neurophysiol; 2004 Jan; 91(1):63-77. PubMed ID: 12826656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleus basalis magnocellularis and pedunculopontine tegmental nucleus: control of the slow EEG waves in rats.
    Kleiner S; Bringmann A
    Arch Ital Biol; 1996 Mar; 134(2):153-67. PubMed ID: 8741223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurophysiological correlates of sleepiness: a combined TMS and EEG study.
    De Gennaro L; Marzano C; Veniero D; Moroni F; Fratello F; Curcio G; Ferrara M; Ferlazzo F; Novelli L; Concetta Pellicciari M; Bertini M; Rossini PM
    Neuroimage; 2007 Jul; 36(4):1277-87. PubMed ID: 17524675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike-wave discharges and sleep spindles.
    Meeren HK; Veening JG; Möderscheim TA; Coenen AM; van Luijtelaar G
    Exp Neurol; 2009 May; 217(1):25-37. PubMed ID: 19416679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Spectral analysis of the EEG of the healthy rat and the rat genetically predisposed to seizure susceptibility].
    Medvedov AV
    Neirofiziologiia; 1987; 19(2):171-9. PubMed ID: 3600869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Handedness leads to interhemispheric EEG asymmetry during sleep in the rat.
    Vyazovskiy VV; Tobler I
    J Neurophysiol; 2008 Feb; 99(2):969-75. PubMed ID: 18077659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eye movements and occipital electrocortical rhythms: Effects of stimulation of the frontal eye field in the cat.
    Schlag J; Petre-Quadens O; De Lee C; Goffe B
    J Physiol (Paris); 1974; 68(3):343-50. PubMed ID: 4615142
    [No Abstract]   [Full Text] [Related]  

  • 18. Effect of lateral hypothalamic lesion on sleep-waking pattern and EEG power spectra in the rat.
    Jurkowlaniec E; Pracki T; Trojniar W; Tokarski J
    Acta Neurobiol Exp (Wars); 1996; 56(1):249-53. PubMed ID: 8787182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronous high-voltage spindles in the cortex-basal ganglia network of awake and unrestrained rats.
    Dejean C; Gross CE; Bioulac B; Boraud T
    Eur J Neurosci; 2007 Feb; 25(3):772-84. PubMed ID: 17313572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power spectral electroencephalogram analysis of the effects of ritanserin in freely moving rats during quiet waking.
    Moyanova S; Kirov R; Ivanova V
    Methods Find Exp Clin Pharmacol; 1997 Nov; 19(9):605-11. PubMed ID: 9500124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.