These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7979872)

  • 1. Phosphorylation of glucose by a guanosine-5'-triphosphate (GTP)-dependent glucokinase in Fibrobacter succinogenes subsp. succinogenes S85.
    Glass TL; Sherwood JS
    Arch Microbiol; 1994; 162(3):180-6. PubMed ID: 7979872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system.
    Martin SA; Russell JB
    Appl Environ Microbiol; 1986 Dec; 52(6):1348-52. PubMed ID: 3789722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexose phosphorylation by the ruminal bacterium Selenomonas ruminantium.
    Martin SA
    J Dairy Sci; 1996 Apr; 79(4):550-6. PubMed ID: 8744219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 13C and 1H NMR study of cellulose metabolism by Fibrobacter succinogenes S85.
    Bibollet X; Bosc N; Matulova M; Delort AM; Gaudet G; Forano E
    J Biotechnol; 2000 Jan; 77(1):37-47. PubMed ID: 10674213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and kinetic characterization of a specific glucokinase from Streptococcus mutans OMZ70 cells.
    Porter EV; Chassy BM; Holmlund CE
    Biochim Biophys Acta; 1982 Dec; 709(2):178-86. PubMed ID: 7150605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cloning, expression, and characterization of the first archaeal ATP-dependent glucokinase from aerobic hyperthermophilic archaeon Aeropyrum pernix.
    Sakuraba H; Mitani Y; Goda S; Kawarabayasi Y; Ohshima T
    J Biochem; 2003 Feb; 133(2):219-24. PubMed ID: 12761185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between carbon and nitrogen metabolism in Fibrobacter succinogenes S85: a 1H and 13C nuclear magnetic resonance and enzymatic study.
    Matheron C; Delort AM; Gaudet G; Liptaj T; Forano E
    Appl Environ Microbiol; 1999 May; 65(5):1941-8. PubMed ID: 10223984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of recently cultured group U2 bacterium in ruminal fiber digestion revealed by coculture with Fibrobacter succinogenes S85.
    Fukuma N; Koike S; Kobayashi Y
    FEMS Microbiol Lett; 2012 Nov; 336(1):17-25. PubMed ID: 22849722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-investigation of glucose metabolism in Fibrobacter succinogenes, using NMR spectroscopy and enzymatic assays. Evidence for pentose phosphates phosphoketolase and pyruvate formate lyase activities.
    Matheron C; Delort AM; Gaudet G; Forano E
    Biochim Biophys Acta; 1997 Jan; 1355(1):50-60. PubMed ID: 9030201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Type II DNA restriction-modification system and an endonuclease from the ruminal bacterium Fibrobacter succinogenes S85.
    Lee SF; Forsberg CW; Gibbins AM
    J Bacteriol; 1992 Aug; 174(16):5275-83. PubMed ID: 1644754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymes associated with metabolism of xylose and other pentoses by Prevotella (Bacteroides) ruminicola strains, Selenomonas ruminantium D, and Fibrobacter succinogenes S85.
    Matte A; Forsberg CW; Verrinder Gibbins AM
    Can J Microbiol; 1992 May; 38(5):370-6. PubMed ID: 1643581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellobiose and cellodextrin metabolism by the ruminal bacterium Ruminococcus albus.
    Lou J; Dawson KA; Strobel HJ
    Curr Microbiol; 1997 Oct; 35(4):221-7. PubMed ID: 9290062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylating enzymes involved in glucose fermentation of Actinomyces naeslundii.
    Takahashi N; Kalfas S; Yamada T
    J Bacteriol; 1995 Oct; 177(20):5806-11. PubMed ID: 7592327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digestion of cell-wall monosaccharides of ryegrass and alfalfa hays by the ruminal bacteria Fibrobacter succinogenes and Butyrivibrio fibrisolvens.
    Miron J; Ben-Ghedalia D
    Can J Microbiol; 1993 Aug; 39(8):780-6. PubMed ID: 8221378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ADP-dependent glucokinase from the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324.
    Labes A; Schönheit P
    Arch Microbiol; 2003 Jul; 180(1):69-75. PubMed ID: 12802482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of dilution rate and pH on the ruminal cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture.
    Weimer PJ
    Arch Microbiol; 1993; 160(4):288-94. PubMed ID: 8239881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and biochemical characterisation of Aspergillus niger hexokinase--the enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate.
    Panneman H; Ruijter GJ; van den Broeck HC; Visser J
    Eur J Biochem; 1998 Nov; 258(1):223-32. PubMed ID: 9851713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partial purification and properties of a specific glucokinase from Streptococcus mutans SL-1.
    Porter EV; Chassy BM; Holmlund CE
    Biochim Biophys Acta; 1980 Feb; 611(2):289-98. PubMed ID: 7357011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diauxic growth of Fibrobacter succinogenes S85 on cellobiose and lactose.
    Ghali I; Sofyan A; Ohmori H; Shinkai T; Mitsumori M
    FEMS Microbiol Lett; 2017 Aug; 364(15):. PubMed ID: 28859317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucokinase of pea seeds.
    Turner JF; Chensee QJ; Harrison DD
    Biochim Biophys Acta; 1977 Feb; 480(2):367-75. PubMed ID: 13840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.