These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 7980511)
1. Infrared characterization of nitric oxide bonding to bovine heart cytochrome c oxidase and myoglobin. Zhao XJ; Sampath V; Caughey WS Biochem Biophys Res Commun; 1994 Oct; 204(2):537-43. PubMed ID: 7980511 [TBL] [Abstract][Full Text] [Related]
2. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase. Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794 [TBL] [Abstract][Full Text] [Related]
3. Redox dependent interactions of the metal sites in carbon monoxide-bound cytochrome c oxidase monitored by infrared and UV/visible spectroelectrochemical methods. Dodson ED; Zhao XJ; Caughey WS; Elliott CM Biochemistry; 1996 Jan; 35(2):444-52. PubMed ID: 8555214 [TBL] [Abstract][Full Text] [Related]
4. Cytochrome c oxidase catalysis of the reduction of nitric oxide to nitrous oxide. Zhao XJ; Sampath V; Caughey WS Biochem Biophys Res Commun; 1995 Jul; 212(3):1054-60. PubMed ID: 7626092 [TBL] [Abstract][Full Text] [Related]
5. Detection of the His-heme Fe2+-NO species in the reduction of NO to N2O by ba3-oxidase from thermus thermophilus. Pinakoulaki E; Ohta T; Soulimane T; Kitagawa T; Varotsis C J Am Chem Soc; 2005 Nov; 127(43):15161-7. PubMed ID: 16248657 [TBL] [Abstract][Full Text] [Related]
6. Identification of conformational substates involved in nitric oxide binding to ferric and ferrous myoglobin through difference Fourier transform infrared spectroscopy (FTIR). Miller LM; Pedraza AJ; Chance MR Biochemistry; 1997 Oct; 36(40):12199-207. PubMed ID: 9315857 [TBL] [Abstract][Full Text] [Related]
7. Infrared evidence of cyanide binding to iron and copper sites in bovine heart cytochrome c oxidase. Implications regarding oxygen reduction. Yoshikawa S; Caughey WS J Biol Chem; 1990 May; 265(14):7945-58. PubMed ID: 2159465 [TBL] [Abstract][Full Text] [Related]
8. Nitric oxide, cytochrome c oxidase and myoglobin: competition and reaction pathways. Giuffrè A; Forte E; Brunori M; Sarti P FEBS Lett; 2005 Apr; 579(11):2528-32. PubMed ID: 15848199 [TBL] [Abstract][Full Text] [Related]
9. Characterization of interactions of nitric oxide with human hemoglobin A by infrared spectroscopy. Sampath V; Zhao XJ; Caughey WS Biochem Biophys Res Commun; 1994 Jan; 198(1):281-7. PubMed ID: 8292032 [TBL] [Abstract][Full Text] [Related]
10. Resonance Raman detection of the Fe2+-C-N modes in heme-copper oxidases: a probe of the active site. Pinakoulaki E; Vamvouka M; Varotsis C Inorg Chem; 2004 Aug; 43(16):4907-10. PubMed ID: 15285666 [TBL] [Abstract][Full Text] [Related]
11. Nitric oxide and cytochrome c oxidase: mechanisms of inhibition and NO degradation. Sarti P; Giuffré A; Forte E; Mastronicola D; Barone MC; Brunori M Biochem Biophys Res Commun; 2000 Jul; 274(1):183-7. PubMed ID: 10903916 [TBL] [Abstract][Full Text] [Related]
12. ATR-FTIR spectroscopy of the P(M) and F intermediates of bovine and Paracoccus denitrificans cytochrome c oxidase. Iwaki M; Puustinen A; Wikström M; Rich PR Biochemistry; 2003 Jul; 42(29):8809-17. PubMed ID: 12873142 [TBL] [Abstract][Full Text] [Related]
13. Effects of crystallization on the heme-carbon monoxide moiety of bovine heart cytochrome c oxidase carbonyl. Tsubaki M; Shinzawa K; Yoshikawa S Biophys J; 1992 Dec; 63(6):1564-71. PubMed ID: 1336988 [TBL] [Abstract][Full Text] [Related]
15. An EPR study of the photodissociation reactions of oxidised cytochrome c oxidase-nitric oxide complexes. Boelens R; Wever R; Van Gelder BF; Rademaker H Biochim Biophys Acta; 1983 Aug; 724(2):176-83. PubMed ID: 6309220 [TBL] [Abstract][Full Text] [Related]
16. Effects of metal ions in the CuB center on the redox properties of heme in heme-copper oxidases: spectroelectrochemical studies of an engineered heme-copper center in myoglobin. Zhao X; Yeung N; Wang Z; Guo Z; Lu Y Biochemistry; 2005 Feb; 44(4):1210-4. PubMed ID: 15667214 [TBL] [Abstract][Full Text] [Related]
17. Cytochrome c oxidase does not catalyze the anaerobic reduction of NO. Stubauer G; Giuffrè A; Brunori M; Sarti P Biochem Biophys Res Commun; 1998 Apr; 245(2):459-65. PubMed ID: 9571175 [TBL] [Abstract][Full Text] [Related]
18. Infrared spectroscopy of the cyanide complex of iron (II) myoglobin and comparison with complexes of microperoxidase and hemoglobin. Reddy KS; Yonetani T; Tsuneshige A; Chance B; Kushkuley B; Stavrov SS; Vanderkooi JM Biochemistry; 1996 Apr; 35(17):5562-70. PubMed ID: 8611547 [TBL] [Abstract][Full Text] [Related]
19. Structural dynamics of myoglobin: FTIR-TDS study of NO migration and binding. Nienhaus K; Palladino P; Nienhaus GU Biochemistry; 2008 Jan; 47(3):935-48. PubMed ID: 18161992 [TBL] [Abstract][Full Text] [Related]
20. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes. Liu JG; Naruta Y; Tani F Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]