These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 7980560)
1. Substitution of the ISP alpha subunit of biphenyl dioxygenase from Pseudomonas results in a modification of the enzyme activity. Tan HM; Cheong CM Biochem Biophys Res Commun; 1994 Oct; 204(2):912-7. PubMed ID: 7980560 [TBL] [Abstract][Full Text] [Related]
2. Active-site engineering of biphenyl dioxygenase: effect of substituted amino acids on substrate specificity and regiospecificity. Suenaga H; Goto M; Furukawa K Appl Microbiol Biotechnol; 2006 Jun; 71(2):168-76. PubMed ID: 16217654 [TBL] [Abstract][Full Text] [Related]
3. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Kumamaru T; Suenaga H; Mitsuoka M; Watanabe T; Furukawa K Nat Biotechnol; 1998 Jul; 16(7):663-6. PubMed ID: 9661201 [TBL] [Abstract][Full Text] [Related]
4. Protein engineering on biphenyl dioxygenase for conferring activity to convert 7-hydroxyflavone and 5,7-dihydroxyflavone (chrysin). Kagami O; Shindo K; Kyojima A; Takeda K; Ikenaga H; Furukawa K; Misawa N J Biosci Bioeng; 2008 Aug; 106(2):121-7. PubMed ID: 18804053 [TBL] [Abstract][Full Text] [Related]
5. Steady-state kinetic characterization of evolved biphenyl dioxygenase, which acquired novel degradation ability for benzene and toluene. Suenaga H; Sato M; Goto M; Takeshita M; Furukawa K Biosci Biotechnol Biochem; 2006 Apr; 70(4):1021-5. PubMed ID: 16636475 [TBL] [Abstract][Full Text] [Related]
6. Directed evolution of biphenyl dioxygenase: emergence of enhanced degradation capacity for benzene, toluene, and alkylbenzenes. Suenaga H; Mitsuoka M; Ura Y; Watanabe T; Furukawa K J Bacteriol; 2001 Sep; 183(18):5441-4. PubMed ID: 11514531 [TBL] [Abstract][Full Text] [Related]
7. Functional analyses of Bph-Tod hybrid dioxygenase, which exhibits high degradation activity toward trichloroethylene. Maeda T; Takahashi Y; Suenaga H; Suyama A; Goto M; Furukawa K J Biol Chem; 2001 Aug; 276(32):29833-8. PubMed ID: 11390387 [TBL] [Abstract][Full Text] [Related]
8. Conversion from arenes having a benzene ring to those having a picolinic acid by simple growing cell reactions using Escherichia coli that expressed the six bacterial genes involved in biphenyl catabolism. Shindo K; Osawa A; Nakamura R; Kagiyama Y; Sakuda S; Shizuri Y; Furukawa K; Misawa N J Am Chem Soc; 2004 Nov; 126(46):15042-3. PubMed ID: 15547997 [TBL] [Abstract][Full Text] [Related]
9. Hybrid pseudomonads engineered by two-step homologous recombination acquire novel degradation abilities toward aromatics and polychlorinated biphenyls. Suenaga H; Nonaka K; Fujihara H; Goto M; Furukawa K Appl Microbiol Biotechnol; 2010 Oct; 88(4):915-23. PubMed ID: 20809076 [TBL] [Abstract][Full Text] [Related]
10. Construction of hybrid biphenyl (bph) and toluene (tod) genes for functional analysis of aromatic ring dioxygenases. Hirose J; Suyama A; Hayashida S; Furukawa K Gene; 1994 Jan; 138(1-2):27-33. PubMed ID: 8125315 [TBL] [Abstract][Full Text] [Related]
11. Substrate binding site of naphthalene 1,2-dioxygenase: functional implications of indole binding. Carredano E; Karlsson A; Kauppi B; Choudhury D; Parales RE; Parales JV; Lee K; Gibson DT; Eklund H; Ramaswamy S J Mol Biol; 2000 Feb; 296(2):701-12. PubMed ID: 10669618 [TBL] [Abstract][Full Text] [Related]
12. Expression in Escherichia coli of biphenyl 2,3-dioxygenase genes from a Gram-positive polychlorinated biphenyl degrader, Rhodococcus jostii RHA1. Ohmori T; Morita H; Tanaka M; Tomoi M; Miyauchi K; Kasai D; Furukawa K; Masai E; Fukuda M Biosci Biotechnol Biochem; 2011; 75(1):26-33. PubMed ID: 21228494 [TBL] [Abstract][Full Text] [Related]
13. Efficient degradation of trichloroethylene by a hybrid aromatic ring dioxygenase. Furukawa K; Hirose J; Hayashida S; Nakamura K J Bacteriol; 1994 Apr; 176(7):2121-3. PubMed ID: 8144482 [TBL] [Abstract][Full Text] [Related]
14. Diversity of the C-terminal portion of the biphenyl dioxygenase large subunit. Vézina J; Barriault D; Sylvestre M J Mol Microbiol Biotechnol; 2008; 15(2-3):139-51. PubMed ID: 18685267 [TBL] [Abstract][Full Text] [Related]
15. Heterologous expression and characterization of the purified oxygenase component of Rhodococcus globerulus P6 biphenyl dioxygenase and of chimeras derived from it. Chebrou H; Hurtubise Y; Barriault D; Sylvestre M J Bacteriol; 1999 Aug; 181(16):4805-11. PubMed ID: 10438748 [TBL] [Abstract][Full Text] [Related]
16. Heterologous expression of biphenyl dioxygenase-encoding genes from a gram-positive broad-spectrum polychlorinated biphenyl degrader and characterization of chlorobiphenyl oxidation by the gene products. McKay DB; Seeger M; Zielinski M; Hofer B; Timmis KN J Bacteriol; 1997 Mar; 179(6):1924-30. PubMed ID: 9068637 [TBL] [Abstract][Full Text] [Related]
17. Functional and structural relationship of various extradiol aromatic ring-cleavage dioxygenases of Pseudomonas origin. Hirose J; Kimura N; Suyama A; Kobayashi A; Hayashida S; Furukawa K FEMS Microbiol Lett; 1994 May; 118(3):273-7. PubMed ID: 8020752 [TBL] [Abstract][Full Text] [Related]
18. Nucleotide sequencing and transcriptional mapping of the genes encoding biphenyl dioxygenase, a multicomponent polychlorinated-biphenyl-degrading enzyme in Pseudomonas strain LB400. Erickson BD; Mondello FJ J Bacteriol; 1992 May; 174(9):2903-12. PubMed ID: 1569021 [TBL] [Abstract][Full Text] [Related]
19. Alteration of regiospecificity in biphenyl dioxygenase by active-site engineering. Suenaga H; Watanabe T; Sato M; Ngadiman ; Furukawa K J Bacteriol; 2002 Jul; 184(13):3682-8. PubMed ID: 12057964 [TBL] [Abstract][Full Text] [Related]
20. Gene components responsible for discrete substrate specificity in the metabolism of biphenyl (bph operon) and toluene (tod operon). Furukawa K; Hirose J; Suyama A; Zaiki T; Hayashida S J Bacteriol; 1993 Aug; 175(16):5224-32. PubMed ID: 8349562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]