BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 7980592)

  • 1. Cells overexpressing Hsp27 show accelerated recovery from heat-induced nuclear protein aggregation.
    Kampinga HH; Brunsting JF; Stege GJ; Konings AW; Landry J
    Biochem Biophys Res Commun; 1994 Nov; 204(3):1170-7. PubMed ID: 7980592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal protein denaturation and protein aggregation in cells made thermotolerant by various chemicals: role of heat shock proteins.
    Kampinga HH; Brunsting JF; Stege GJ; Burgman PW; Konings AW
    Exp Cell Res; 1995 Aug; 219(2):536-46. PubMed ID: 7641806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat shock protein 27 stimulates recovery of RNA and protein synthesis following a heat shock.
    Carper SW; Rocheleau TA; Cimino D; Storm FK
    J Cell Biochem; 1997 Aug; 66(2):153-64. PubMed ID: 9213217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of HSP27 during development and decay of thermotolerance in Chinese hamster cells.
    Landry J; Chrétien P; Laszlo A; Lambert H
    J Cell Physiol; 1991 Apr; 147(1):93-101. PubMed ID: 2037626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute extracellular acidification increases nuclear associated protein levels in human melanoma cells during 42 degrees C hyperthermia and enhances cell killing.
    Han JS; Storck CW; Wachsberger PR; Leeper DB; Berd D; Wahl ML; Coss RA
    Int J Hyperthermia; 2002; 18(5):404-15. PubMed ID: 12227927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermotolerance and nuclear protein aggregation: protection against initial damage or better recovery?
    Stege GJ; Brunsting JF; Kampinga HH; Konings AW
    J Cell Physiol; 1995 Sep; 164(3):579-86. PubMed ID: 7650065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced constitutive expression of the 27-kDa heat shock proteins in heat-resistant variants from Chinese hamster cells.
    Chrétien P; Landry J
    J Cell Physiol; 1988 Oct; 137(1):157-66. PubMed ID: 3170655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hsp27 protects the cytoskeleton and nucleus from the effects of 42 degrees C at pH 6.7 in CHO cells adapted to growth at pH 6.7.
    Coss RA; Sedar AW; Sistrun SS; Storck CW; Wang PH; Wachsberger PR
    Int J Hyperthermia; 2002; 18(3):216-32. PubMed ID: 12028638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of HSP27 results in increased sensitivity to tumor necrosis factor, etoposide, and H2O2 in an oxidative stress-resistant cell line.
    Mairesse N; Bernaert D; Del Bino G; Horman S; Mosselmans R; Robaye B; Galand P
    J Cell Physiol; 1998 Dec; 177(4):606-17. PubMed ID: 10092213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased thermostability of thermotolerant CHL V79 cells as determined by differential scanning calorimetry.
    Lepock JR; Frey HE; Heynen MP; Nishio J; Waters B; Ritchie KP; Kruuv J
    J Cell Physiol; 1990 Mar; 142(3):628-34. PubMed ID: 2312619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable overexpression of human HSF-1 in murine cells suggests activation rather than expression of HSF-1 to be the key regulatory step in the heat shock gene expression.
    Mivechi NF; Shi XY; Hahn GM
    J Cell Biochem; 1995 Oct; 59(2):266-80. PubMed ID: 8904320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of diamide toxicity in thermotolerant cells by inhibition of protein synthesis.
    Freeman ML; Meredith MJ
    Cancer Res; 1989 Aug; 49(16):4493-8. PubMed ID: 2743338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acquisition of thermotolerance induced by heat and arsenite in HeLa S3 cells: multiple pathways to induce tolerance?
    Kampinga HH; Brunsting JF; Konings AW
    J Cell Physiol; 1992 Feb; 150(2):406-15. PubMed ID: 1370842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of heat shock on the intracellular distribution of proteins.
    Murnane JP; Li GC
    Radiat Res; 1985 Mar; 101(3):480-90. PubMed ID: 4039070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diamide-induced cytotoxicity and thermotolerance in CHO cells.
    Borrelli MJ; Stafford DM; Rausch CM; Bernock LJ; Freeman ML; Lepock JR; Corry PM
    J Cell Physiol; 1998 Dec; 177(3):483-92. PubMed ID: 9808156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Heat-shock proteins in the nuclear matrix of Chinese hamster fibroblasts].
    Bul'diaeva TV; Akopov SB; Kuz'mina SN; Zbarskiĭ IB
    Biokhimiia; 1986 Mar; 51(3):494-504. PubMed ID: 3697422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat-shock-induced changes in nuclear protein and cell killing in thermotolerant HeLa cells.
    Roti Roti JL; Turkel N
    Radiat Res; 1994 May; 138(2):286-90. PubMed ID: 8184000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of the ATP-binding domain and nucleolar localization domain of HSP72 in the protection of nuclear proteins against heat-induced aggregation.
    Stege GJ; Li L; Kampinga HH; Konings AW; Li GC
    Exp Cell Res; 1994 Sep; 214(1):279-84. PubMed ID: 8082731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal analysis of CHL V79 cells using differential scanning calorimetry: implications for hyperthermic cell killing and the heat shock response.
    Lepock JR; Frey HE; Rodahl AM; Kruuv J
    J Cell Physiol; 1988 Oct; 137(1):14-24. PubMed ID: 3170654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lamin B is a prompt heat shock protein.
    Dynlacht JR; Story MD; Zhu WG; Danner J
    J Cell Physiol; 1999 Jan; 178(1):28-34. PubMed ID: 9886487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.