These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 7980939)

  • 1. A rapid FISH technique for quantitative microscopy.
    Haar FM; Durm M; Aldinger K; Celeda D; Hausmann M; Ludwig H; Cremer C
    Biotechniques; 1994 Aug; 17(2):346-8, 350-3. PubMed ID: 7980939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis.
    Celeda D; Aldinger K; Haar FM; Hausmann M; Durm M; Ludwig H; Cremer C
    Cytometry; 1994 Sep; 17(1):13-25. PubMed ID: 8001456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of fast-fluorescence in situ hybridization with repetitive alpha-satellite probes.
    Durm M; Haar FM; Hausmann M; Ludwig H; Cremer C
    Z Naturforsch C J Biosci; 1996; 51(3-4):253-61. PubMed ID: 8639232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimized Fast-FISH with alpha-satellite probes: acceleration by microwave activation.
    Durm M; Haar FM; Hausmann M; Ludwig H; Cremer C
    Braz J Med Biol Res; 1997 Jan; 30(1):15-23. PubMed ID: 9222398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Fast-FISH for alpha-satellite DNA probes.
    Haar FM; Durm M; Hausmann M; Ludwig H; Cremer C
    J Biochem Biophys Methods; 1996 Oct; 33(1):43-54. PubMed ID: 8905467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics.
    Iourov IY; Soloviev IV; Vorsanova SG; Monakhov VV; Yurov YB
    J Histochem Cytochem; 2005 Mar; 53(3):401-8. PubMed ID: 15750029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence ratio measurements of double-labeled probes for multiple in situ hybridization by digital imaging microscopy.
    Nederlof PM; van der Flier S; Vrolijk J; Tanke HJ; Raap AK
    Cytometry; 1992; 13(8):839-45. PubMed ID: 1459001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labelling quality and chromosome morphology after low temperature FISH analysed by scanning far-field and near-field optical microscopy.
    Winkler R; Perner B; Rapp A; Durm M; Cremer C; Greulich KO; Hausmann M
    J Microsc; 2003 Jan; 209(Pt 1):23-33. PubMed ID: 12535181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping of low-frequency chimeric yeast artificial chromosome libraries from human chromosomes 16 and 21 by fluorescence in situ hybridization and quantitative image analysis.
    Marrone BL; Campbell EW; Anzick SL; Shera K; Campbell M; Yoshida TM; McCormick MK; Deaven L
    Genomics; 1994 May; 21(1):202-7. PubMed ID: 8088788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A DNA probe suitable for the detection of chromosome 21 copy number in human interphase nuclei by fluorescence in situ hybridization].
    Shi Q; Shan X; Zhang J; Zhang X; Chen Y; Deng X; Huang H; Yu L; Zhao S; Zheng Q; Adler I
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 1999 Feb; 16(1):36-40. PubMed ID: 9949239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast-FISH technique for rapid, simultaneous labeling of all human centromeres.
    Durm M; Sorokine-Durm I; Haar FM; Hausmann M; Ludwig H; Voisin P; Cremer C
    Cytometry; 1998 Mar; 31(3):153-62. PubMed ID: 9515714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reutilization of previously hybridized slides for fluorescence in situ hybridization.
    Epstein L; DeVries S; Waldman FM
    Cytometry; 1995 Dec; 21(4):378-81. PubMed ID: 8608736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence in situ hybridization of metaphase chromosomes in suspension.
    He H; Deng W; Cassel MJ; Lucas JN
    Int J Radiat Biol; 2001 Jul; 77(7):787-95. PubMed ID: 11454279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability and efficiency of interphase-fish with alpha-satellite probe for detection of aneuploidy.
    Acar H; Yildirim MS; Kaynak M
    Genet Couns; 2002; 13(1):11-7. PubMed ID: 12017232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new FISH protocol with increased sensitivity for physical mapping with short probes in plants.
    Guzzo F; Campagnari E; Levi M
    J Exp Bot; 2000 May; 51(346):965-70. PubMed ID: 10948224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvements in cytological preparations for fluorescent in situ hybridization in Passiflora.
    Souza MM; Urdampilleta JD; Forni-Martins ER
    Genet Mol Res; 2010 Nov; 9(4):2148-55. PubMed ID: 21053178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular markers for diagnosis of Prader-Willi syndrome in thai patients by fish.
    Wiriyaukaradecha S; Patmasiriwat P; Wasant P; Tantiniti P
    Southeast Asian J Trop Med Public Health; 2003 Dec; 34(4):881-6. PubMed ID: 15115105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymerase chain reaction-based suppression of repetitive sequences in whole chromosome painting probes for FISH.
    Dugan LC; Pattee MS; Williams J; Eklund M; Sorensen K; Bedford JS; Christian AT
    Chromosome Res; 2005; 13(1):27-32. PubMed ID: 15791409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of a single copy gene on a mitotic metaphase chromosome by fluorescence in situ hybridization (FISH) in the sawfly, Athalia rosae (Hymenoptera).
    Matsumoto K; Yamamoto DS; Sumitani M; Lee JM; Hatakeyama M; Oishi K
    Arch Insect Biochem Physiol; 2002 Jan; 49(1):34-40. PubMed ID: 11754092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid and simultaneous detection of chromosome Y- and 1-bearing porcine spermatozoa by fluorescence in situ hybridization.
    Kawarasaki T; Sone M; Yoshida M; Bamba K
    Mol Reprod Dev; 1996 Apr; 43(4):548-53. PubMed ID: 9052947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.