These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7981047)

  • 1. Transdifferentiation of pigmented multipotent epithelium during morphallactic development of budding tunicates.
    Kawamura K; Fujiwara S
    Int J Dev Biol; 1994 Jun; 38(2):369-77. PubMed ID: 7981047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multipotent epithelial cells in the process of regeneration and asexual reproduction in colonial tunicates.
    Kawamura K; Sugino Y; Sunanaga T; Fujiwara S
    Dev Growth Differ; 2008 Jan; 50(1):1-11. PubMed ID: 17986261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular and molecular characterization of transdifferentiation in the process of morphallaxis of budding tunicates.
    Kawamura K; Fujiwara S
    Semin Cell Biol; 1995 Jun; 6(3):117-26. PubMed ID: 7548850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell adhesion in the process of asexual reproduction of tunicates.
    Kawamura K; Sugino YM
    Microsc Res Tech; 1999 Feb; 44(4):269-78. PubMed ID: 10098927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ascidian Budding as a Transdifferentiation-Like System: Multipotent Epithelium is not Undifferentiated: (ascidian budding/multipotent stem cells/atrial epithelium/transdifferentiation/monoclonal antidody).
    Fujiwara S; Kawamura K
    Dev Growth Differ; 1992 Aug; 34(4):463-472. PubMed ID: 37281003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of irradiated tunicate buds: Is cell division cycle required for morphallaxis?
    Kawamura K; Hashimoto K; Nakauchi M
    Dev Growth Differ; 1995 Oct; 37(5):487-496. PubMed ID: 37281841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RACK1 regulates mesenchymal cell recruitment during sexual and asexual reproduction of budding tunicates.
    Tatzuke Y; Sunanaga T; Fujiwara S; Kawamura K
    Dev Biol; 2012 Aug; 368(2):393-403. PubMed ID: 22698545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and function of myc during asexual reproduction of the budding ascidian Polyandrocarpa misakiensis.
    Fujiwara S; Isozaki T; Mori K; Kawamura K
    Dev Growth Differ; 2011 Dec; 53(9):1004-14. PubMed ID: 22168620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regeneration of the gut requires retinoic acid in the budding ascidian Polyandrocarpa misakiensis.
    Kaneko N; Katsuyama Y; Kawamura K; Fujiwara S
    Dev Growth Differ; 2010 Jun; 52(5):457-68. PubMed ID: 20507359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of cell lines from multipotent epithelial sheet in the budding tunicate, Polyandrocarpa misakiensis.
    Kawamura K; Fujiwara S
    Cell Struct Funct; 1995 Feb; 20(1):97-106. PubMed ID: 7796472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ascidian homologue of the gonadotropin-releasing hormone receptor is a retinoic acid target gene.
    Kobayashi Y; Ohashi M; Kawamura K; Yubisui T; Fujiwara S
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Jul; 141(3):274-80. PubMed ID: 15927497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histone methylation codes involved in stemness, multipotency, and senescence in budding tunicates.
    Kawamura K; Kinoshita M; Sekida S; Sunanaga T
    Mech Ageing Dev; 2015 Jan; 145():1-12. PubMed ID: 25543066
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The postbranchial digestive tract of the ascidian, Polyandrocarpa misakiensis (Tunicata: Ascidiacea). 1. Oesophagus.
    Koyama H
    Zoolog Sci; 2011 Feb; 28(2):118-25. PubMed ID: 21303204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The postbranchial digestive tract of the ascidian, Polyandrocarpa misakiensis (Tunicata: Ascidiacea). 2. Stomach.
    Koyama H; Taneda Y; Ishii T
    Zoolog Sci; 2012 Feb; 29(2):97-110. PubMed ID: 22303850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Budding-specific lectin induced in epithelial cells is an extracellular matrix component for stem cell aggregation in tunicates.
    Kawamura K; Fujiwara S; Sugino YM
    Development; 1991 Nov; 113(3):995-1005. PubMed ID: 1821864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autophagic dedifferentiation induced by cooperation between TOR inhibitor and retinoic acid signals in budding tunicates.
    Kawamura K; Yoshida T; Sekida S
    Dev Biol; 2018 Jan; 433(2):384-393. PubMed ID: 29291982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Embryonic and early fetal development of human taste buds: a transmission electron microscopical study.
    Witt M; Reutter K
    Anat Rec; 1996 Dec; 246(4):507-23. PubMed ID: 8955790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular collaborations between serpins and trefoil factor promote endodermal cell growth and gastrointestinal differentiation in budding tunicates.
    Kawamura K; Kariya Y; Ono Y; Muramoto A; Ohta K; Fujiwara S
    Dev Growth Differ; 2006 Jun; 48(5):309-22. PubMed ID: 16759281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A retinoic acid-inducible modular protease in budding ascidians.
    Ohashi M; Kawamura K; Fujii N; Yubisui T; Fujiwara S
    Dev Biol; 1999 Oct; 214(1):38-45. PubMed ID: 10491255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney.
    Meyer TN; Schwesinger C; Bush KT; Stuart RO; Rose DW; Shah MM; Vaughn DA; Steer DL; Nigam SK
    Dev Biol; 2004 Nov; 275(1):44-67. PubMed ID: 15464572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.