BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7981271)

  • 41. Ionic strength effect on the thermal unfolding of alpha-spectrin peptides.
    Lusitani D; Menhart N; Keiderling TA; Fung LW
    Biochemistry; 1998 Nov; 37(47):16546-54. PubMed ID: 9843421
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Linker DNA destabilizes condensed chromatin.
    Green GR; Ferlita RR; Walkenhorst WF; Poccia DL
    Biochem Cell Biol; 2001; 79(3):349-63. PubMed ID: 11467748
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dinucleosomes show compaction by ionic strength, consistent with bending of linker DNA.
    Butler PJ; Thomas JO
    J Mol Biol; 1998 Aug; 281(3):401-7. PubMed ID: 9698556
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative analysis of chromatin higher-order organization using agarose gel electrophoresis.
    Hansen JC; Fletcher TM; Kreider JI
    Methods Mol Biol; 1999; 119():113-25. PubMed ID: 10804507
    [No Abstract]   [Full Text] [Related]  

  • 45. Nucleosome dynamics. III. Histone tail-dependent fluctuation of nucleosomes between open and closed DNA conformations. Implications for chromatin dynamics and the linking number paradox. A relaxation study of mononucleosomes on DNA minicircles.
    De Lucia F; Alilat M; Sivolob A; Prunell A
    J Mol Biol; 1999 Jan; 285(3):1101-19. PubMed ID: 9918719
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The dependence of electrophoretic and spectroscopic properties of the pyruvate dehydrogenase complex on mono- and divalent ions.
    Pawełczyk T; Easom RA; Olson MS
    Acta Biochim Pol; 1994; 41(1):63-72. PubMed ID: 8030376
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Chemical modification of eukaryotic cell chromatin, directed at d(GT)n-repeats of DNA].
    Bozhenok LN; Vlasov VV; Chernolovskaia EL; Ivanova EM; Kobets ND
    Bioorg Khim; 1998 Dec; 24(12):916-9. PubMed ID: 10079950
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Influence of temperature and ionic strength on the low-frequency dielectric dispersion of DNA solutions.
    Tung MS; Molinari RJ; Cole RH; Gibbs JH
    Biopolymers; 1977 Dec; 16(12):2653-69. PubMed ID: 597575
    [No Abstract]   [Full Text] [Related]  

  • 49. [Dissociation and decompactization of chromatin by heparin in a medium of "physiologic" ionic strength].
    Paponov VD; Gromov PS; Krasnov PA; Spitkovskiĭ DM; Ruzga B
    Biull Eksp Biol Med; 1980 Sep; 90(9):325-8. PubMed ID: 7426736
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Brownian dynamics model for the chromatin fiber.
    Ehrlich L; Münkel C; Chirico G; Langowski J
    Comput Appl Biosci; 1997 Jun; 13(3):271-9. PubMed ID: 9183532
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fifty hertz magnetic fields individually affect chromatin conformation in human lymphocytes: dependence on amplitude, temperature, and initial chromatin state.
    Sarimov R; Alipov ED; Belyaev IY
    Bioelectromagnetics; 2011 Oct; 32(7):570-9. PubMed ID: 21500233
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The chromatin fiber: structure and conformational transitions as revealed by optical anisotropy studies.
    Dimitrov SI; Makarov VL; Pashev IG
    J Biomol Struct Dyn; 1990 Aug; 8(1):23-35. PubMed ID: 2275795
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative analysis of macromolecular conformational changes using agarose gel electrophoresis: application to chromatin folding.
    Fletcher TM; Serwer P; Hansen JC
    Biochemistry; 1994 Sep; 33(36):10859-63. PubMed ID: 8086402
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chromatin fiber functional organization: some plausible models.
    Lesne A; Victor JM
    Eur Phys J E Soft Matter; 2006 Mar; 19(3):279-90. PubMed ID: 16501875
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Chromatin condensation is confined to the loop and involves an all-or-none structural change.
    Balbi C; Sanna P; Barboro P; Alberti I; Barbesino M; Patrone E
    Biophys J; 1999 Nov; 77(5):2725-35. PubMed ID: 10545372
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The response of DNA length and twist to changes in ionic strength.
    Manning GS
    Biopolymers; 2015 Apr; 103(4):223-6. PubMed ID: 25382052
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Influence of ionic strength and temperature on the structure of poly(G) in solution 1H replaced by 3H exchange method].
    Lesnik EA; Maslova RN; Varshavskiĭ IaM
    Mol Biol (Mosk); 1981; 15(1):161-6. PubMed ID: 7038441
    [No Abstract]   [Full Text] [Related]  

  • 58. Determining the potentiative state of a chromatin domain.
    Kramer JA; Krawetz SA
    Biotechniques; 1997 May; 22(5):879-82. PubMed ID: 9149870
    [No Abstract]   [Full Text] [Related]  

  • 59. Ionic strength effects on macroion diffusion and excess light-scattering intensities of short DNA rods.
    Fulmer AW; Benbasat JA; Bloomfield VA
    Biopolymers; 1981 Jun; 20(6):1147-59. PubMed ID: 7284568
    [No Abstract]   [Full Text] [Related]  

  • 60. Flow linear dichroism supports an accordion model for the salt-induced condensation of chromatin.
    Kubista M; Nielsen PE; Nordén B
    Biochem Pharmacol; 1988 May; 37(9):1813-4. PubMed ID: 3377840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.