BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7981275)

  • 21. Theoretical mechanistic basis of oxidants of methaemoglobin formation.
    Akintonwa DA
    Med Hypotheses; 2000 Feb; 54(2):312-20. PubMed ID: 10790768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro method for measurement of free radical effects: effect of PMS (phenazine methosulphate) on red blood cell membrane.
    Wittmann I; Past T; Tapsonyi Z; Horváth T; Jávor T
    Acta Physiol Hung; 1989; 73(2-3):341-5. PubMed ID: 2596321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of ionic milieu to the free radicals generated by phenizine methosulphate (PMS).
    Past T; Wittmann I; Belágyi J; Jávor T
    Acta Physiol Hung; 1989; 73(2-3):347-9. PubMed ID: 2556890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phenazine methosulphate-treated red blood cells activate NF-κB and upregulate endothelial ICAM-1 expression.
    Kaliyaperumal R; Wang J; Meiselman HJ; Neu B
    Blood Cells Mol Dis; 2019 Nov; 79():102343. PubMed ID: 31302453
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A rapid colorimetric assay with the tetrazolium salt MTT and phenazine methosulfate (PMS) for viability of Entamoeba histolytica.
    Cedillo-Rivera R; Ramírez A; Muñoz O
    Arch Med Res; 1992; 23(2):59-61. PubMed ID: 1285086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies on the phenazine methosulphate--tetrazolium salt capture reaction in NAD(P)+-dependent dehydrogenase cytochemistry. III. The role of superoxide in tetrazolium reduction.
    Raap AK
    Histochem J; 1983 Oct; 15(10):977-86. PubMed ID: 6315642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ferrous iron transport in Streptococcus mutans.
    Evans SL; Arceneaux JE; Byers BR; Martin ME; Aranha H
    J Bacteriol; 1986 Dec; 168(3):1096-9. PubMed ID: 2946662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of redox agents on the Ca2+-activated K+ channel.
    García-Sancho J; Herreros B
    Cell Calcium; 1983 Dec; 4(5-6):493-7. PubMed ID: 6323010
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of methaemoglobin reduction by extracellular NADH in mammalian erythrocytes.
    Kennett EC; Ogawa E; Agar NS; Godwin IR; Bubb WA; Kuchel PW
    Int J Biochem Cell Biol; 2005 Jul; 37(7):1438-45. PubMed ID: 15833275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pro-oxidative effects of Chinese herbal medicine on G6PD-deficient erythrocytes in vitro.
    Ko CH; Li K; Ng PC; Fung KP; Wong RP; Chui KM; Gu GJ; Yung E; Fok TF
    Toxicol In Vitro; 2008 Aug; 22(5):1222-7. PubMed ID: 18515042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two mechanisms for toxic effects of hydroxylamines in human erythrocytes: involvement of free radicals and risk of potentiation.
    Evelo CT; Spooren AA; Bisschops RA; Baars LG; Neis JM
    Blood Cells Mol Dis; 1998 Sep; 24(3):280-95. PubMed ID: 10087986
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction of methemoglobin by cobaltocytochrome c catalyzed by mediators.
    Dickinson LC; Gibson HL; Chien JC
    Eur J Biochem; 1978 Jul; 88(1):239-45. PubMed ID: 27361
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidation-induced changes in microrheologic properties of the red blood cell membrane.
    Hebbel RP; Leung A; Mohandas N
    Blood; 1990 Sep; 76(5):1015-20. PubMed ID: 2393710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hyperthermia, unlike ionizing radiation and chemical oxidative stress, does not stimulate proteolysis in erythrocytes.
    Bartosz G; Gaczynska M; Retelewska W; Grzelinska E; Rosin J
    Int J Biochem; 1990; 22(1):25-30. PubMed ID: 2328818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A chemiluminescence (CL) of phenazine methosulfate (PMS) in the presence of hydrogen peroxide (HOOH) induced by reductants including reduced nicotinamide adenine dinucleotide (NADH) and ascorbic acid (AA).
    CHAYET C; STEELE RH; BRECKINRIDGE BS
    Biochem Biophys Res Commun; 1963 Mar; 10():390-5. PubMed ID: 14040658
    [No Abstract]   [Full Text] [Related]  

  • 36. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes.
    Ogasawara Y; Funakoshi M; Ishii K
    Blood Cells Mol Dis; 2008; 41(3):237-43. PubMed ID: 18706836
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prooxidative effects of TEMPO on human erythrocytes.
    Balcerczyk A; Łuczak K; Soszyński M; Bartosz G
    Cell Biol Int; 2004; 28(8-9):585-91. PubMed ID: 15350593
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of insulin on Ca(2+)-dependent hyperpolarization in erythrocytes from healthy donors and patients with type 2 diabetes mellitus accompanied by arterial hypertension.
    Kremeno SV; Sitozhevskii AV; Petrova IV; Starikova NS; Karpov RS
    Bull Exp Biol Med; 2005 Nov; 140(5):499-501. PubMed ID: 16758608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Phenazine methosulfate system-induced membrane hyperpolarization in the human erythrocytes].
    Sitozhevskiĭ AV; Petrova IV; Kremeno SV; Kovalenko NS; Karpov RS
    Ross Fiziol Zh Im I M Sechenova; 2006 Apr; 92(4):461-70. PubMed ID: 16813152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of electron donors on Ca2+-dependent K+ transport in one-step inside-out vesicles from the human erythrocyte membrane.
    Alvarez J; García-Sancho J; Herreros B
    Biochim Biophys Acta; 1984 Mar; 771(1):23-7. PubMed ID: 6322845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.