These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 7981433)

  • 21. Viscoelastic, Optical, and Surgical Properties of Vitreous Body Replacement Hydrogels After Aging Compared to Porcine Vitreous Bodies And Silicone Oils.
    Hammer M; Muuss M; Herbster L; Herth J; Scheuerle A; Khoramnia R; Labuz G; Uhl P; Auffarth GU
    Transl Vis Sci Technol; 2024 Jul; 13(7):5. PubMed ID: 38967936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Studies on viscoelasticity of the vitreous body (author's transl)].
    Kawano S
    Nippon Ganka Gakkai Zasshi; 1982; 86(3):298-306. PubMed ID: 7102483
    [No Abstract]   [Full Text] [Related]  

  • 23. Validation of hyaluronic acid-agar-based hydrogels as vitreous humor mimetics for in vitro drug and particle migration evaluations.
    Thakur SS; Shenoy SK; Suk JS; Hanes JS; Rupenthal ID
    Eur J Pharm Biopharm; 2020 Mar; 148():118-125. PubMed ID: 31981693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Viscoelastic shear properties of the fresh porcine lens.
    Schachar RA; Chan RW; Fu M
    Br J Ophthalmol; 2007 Mar; 91(3):366-8. PubMed ID: 17035268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new method for the determination of the mechanical properties of the vitreous.
    Weber H; Landwehr G
    Ophthalmic Res; 1982; 14(5):326-34. PubMed ID: 7145326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Localized viscoelasticity measurements with untethered intravitreal microrobots.
    Pokki J; Ergeneman O; Bergeles C; Torun H; Nelson BJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2813-6. PubMed ID: 23366510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo measurements of the viscoelasticity of the human vitreous humor.
    Zimmerman RL
    Biophys J; 1980 Mar; 29(3):539-44. PubMed ID: 7295871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preservation of the structure of enzymatically-degraded bovine vitreous using synthetic proteoglycan mimics.
    Zhang Q; Filas BA; Roth R; Heuser J; Ma N; Sharma S; Panitch A; Beebe DC; Shui YB
    Invest Ophthalmol Vis Sci; 2014 Oct; 55(12):8153-62. PubMed ID: 25342623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation and correction for optical scattering variations in laser speckle rheology of biological fluids.
    Hajjarian Z; Nadkarni SK
    PLoS One; 2013; 8(5):e65014. PubMed ID: 23705028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rheological and microstructural properties of porcine gastric digesta and diets containing pectin or mango powder.
    Wu P; Dhital S; Williams BA; Chen XD; Gidley MJ
    Carbohydr Polym; 2016 Sep; 148():216-26. PubMed ID: 27185134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of biological stimuli on the viscosity of the vitreous.
    Kawano SI; Honda Y; Negi A
    Acta Ophthalmol (Copenh); 1982 Dec; 60(6):977-91. PubMed ID: 7170940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a synovial fluid analogue with bio-relevant rheology for wear testing of orthopaedic implants.
    Smith AM; Fleming L; Wudebwe U; Bowen J; Grover LM
    J Mech Behav Biomed Mater; 2014 Apr; 32():177-184. PubMed ID: 24469228
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural Model for Viscoelastic Properties of Pericardial Bioprosthetic Valves.
    Rassoli A; Fatouraee N; Guidoin R
    Artif Organs; 2018 Jun; 42(6):630-639. PubMed ID: 29602267
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Rheological properties of sinomenine in situ liquid crystal as liquid embolic agent].
    Cao JJ; Huang J; Gui SY; Li ZG; Li Q; Zhang Y; Wang XQ; Chu XQ
    Zhongguo Zhong Yao Za Zhi; 2018 Jun; 43(12):2522-2530. PubMed ID: 29950070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical properties of retinal glial cells: comparative and developmental data.
    Lu YB; Pannicke T; Wei EQ; Bringmann A; Wiedemann P; Habermann G; Buse E; Käs JA; Reichenbach A
    Exp Eye Res; 2013 Aug; 113():60-5. PubMed ID: 23712083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional evaluation of a novel vitreous substitute using polyethylene glycol sols injected into a foldable capsular vitreous body.
    Chen H; Feng S; Liu Y; Huang Z; Sun X; Zhou L; Lu X; Gao Q
    J Biomed Mater Res A; 2013 Sep; 101(9):2538-47. PubMed ID: 23359564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vitreous Levels of Luteinizing Hormone and VEGF are Strongly Correlated in Healthy Mammalian Eyes.
    Movsas TZ; Sigler R; Muthusamy A
    Curr Eye Res; 2018 Aug; 43(8):1041-1044. PubMed ID: 29677452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of standard tests to examine viscoelastic properties of blood of experimental animals for pediatric mechanical support device evaluation.
    Marascalco PJ; Ritchie SP; Snyder TA; Kameneva MV
    ASAIO J; 2006; 52(5):567-74. PubMed ID: 16966861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.