These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7981433)

  • 101. Effects of Collagenase Type II on Vitreous Humor-An In Situ Rheological Study.
    Rangchian A; Francone A; Farajzadeh M; Hosseini H; Connelly K; Hubschman JP; Kavehpour HP
    J Biomech Eng; 2019 Aug; 141(8):. PubMed ID: 30942841
    [TBL] [Abstract][Full Text] [Related]  

  • 102. [Studies on the content of free amino acids and peptides in the vitreous humor of the pig and cow].
    KRUEGER R; KUECHLE HJ
    Albrecht Von Graefes Arch Ophthalmol; 1959; 161():387-90. PubMed ID: 14412224
    [No Abstract]   [Full Text] [Related]  

  • 103. A nondestructive contactless technique to assess the viscoelasticity of blood clots in real-time.
    Naseri S; Koushki N; Rezabeigi E; Ehrlicher A; Nazhat SN
    J Mech Behav Biomed Mater; 2020 Oct; 110():103921. PubMed ID: 32957216
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Protocol to quantify enzymatic effects on vitreous liquefaction in porcine eyes using a transwell-plate system.
    Wolf J; Sabage LE; Sun YJ; Mahajan VB
    STAR Protoc; 2022 Dec; 3(4):101754. PubMed ID: 36208453
    [TBL] [Abstract][Full Text] [Related]  

  • 105. [On the problem of the antibacterial quality of the human vitreous body].
    ZANGGER J; MARX J
    Albrecht Von Graefes Arch Ophthalmol; 1960; 162():237-43. PubMed ID: 13787858
    [No Abstract]   [Full Text] [Related]  

  • 106. Complex coacervation and metal-ligand bonding as synergistic design elements for aqueous viscoelastic materials.
    Filippov AD; Sprakel J; Kamperman M
    Soft Matter; 2021 Mar; 17(12):3294-3305. PubMed ID: 33655283
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Erratum: Rheological Properties and Age-Related Changes of the Human Vitreous Humor.
    Frontiers Production Office
    Front Bioeng Biotechnol; 2019; 7():44. PubMed ID: 30931302
    [TBL] [Abstract][Full Text] [Related]  

  • 108. The Anterior Vitreous-in Health and Disease.
    Kirby DB
    Trans Am Ophthalmol Soc; 1931; 29():193-220. PubMed ID: 16692887
    [No Abstract]   [Full Text] [Related]  

  • 109. Transplantation of the vitreous.
    GARTNER S; PRIESTLEY BS
    Arch Ophthal; 1947 Oct; 38(4):487-93. PubMed ID: 20269927
    [No Abstract]   [Full Text] [Related]  

  • 110. Rheology of the vitreous body: part 3. Concentration of electrolytes, collagen and hyaluronic acid.
    Lee B; Litt M; Buchsbaum G
    Biorheology; 1994; 31(4):339-51. PubMed ID: 7981434
    [TBL] [Abstract][Full Text] [Related]  

  • 111. An Inverse Method to Determine Mechanical Parameters of Porcine Vitreous Bodies Based on the Indentation Test.
    Zu H; Zhang K; Zhang H; Qian X
    Bioengineering (Basel); 2023 May; 10(6):. PubMed ID: 37370577
    [TBL] [Abstract][Full Text] [Related]  

  • 112. Ex Vivo Visualization of Distribution of Intravitreal Injections in the Porcine Vitreous and Hydrogels Simulating the Vitreous.
    Auel T; Scherke LP; Hadlich S; Mouchantat S; Grimm M; Weitschies W; Seidlitz A
    Pharmaceutics; 2023 Feb; 15(3):. PubMed ID: 36986647
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Ultrasonic Vitrectomy Performance Assessment Using Micro-Extensional Rheology.
    Hollister JCP; Rodriguez M; Hosseini H; Papour A; Hubschman JP; Kavehpour HP
    Transl Vis Sci Technol; 2023 Feb; 12(2):24. PubMed ID: 36790819
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Structure and mechanics of the vitreoretinal interface.
    Phillips JD; Hwang ES; Morgan DJ; Creveling CJ; Coats B
    J Mech Behav Biomed Mater; 2022 Oct; 134():105399. PubMed ID: 35963021
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Drop-of-sample rheometry of biological fluids by noncontact acoustic tweezing spectroscopy.
    Kasireddy N; Orie JC; Khismatullin DB
    Lab Chip; 2022 Aug; 22(16):3067-3079. PubMed ID: 35851909
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Determining vitreous viscosity using fluorescence recovery after photobleaching.
    Srikantha N; Teijeiro-Gonzalez Y; Simpson A; Elsaid N; Somavarapu S; Suhling K; Jackson TL
    PLoS One; 2022; 17(2):e0261925. PubMed ID: 35143514
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Comparison of modern high-speed vitrectomy systems and the advantages of using dual-bladed probes.
    Oravecz R; Uthoff D; Schrage N; Dutescu RM
    Int J Retina Vitreous; 2021 Jan; 7(1):8. PubMed ID: 33468260
    [TBL] [Abstract][Full Text] [Related]  

  • 118. A promising approach in laser vitrectomy executed by plasma-mediated removal of vitreous body via a diode-pumped Q-switched Nd:YAG laser.
    Uthoff D; Oravecz R; Kuehnl R; Rubin-Schwarz F; Frentzen M; Schrage N; Meister J
    Sci Rep; 2020 Dec; 10(1):21710. PubMed ID: 33303956
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Influence of Charge, Hydrophobicity, and Size on Vitreous Pharmacokinetics of Large Molecules.
    Crowell SR; Wang K; Famili A; Shatz W; Loyet KM; Chang V; Liu Y; Prabhu S; Kamath AV; Kelley RF
    Transl Vis Sci Technol; 2019 Nov; 8(6):1. PubMed ID: 31695962
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Age-Related Loss of Human Vitreal Viscoelasticity.
    Schulz A; Wahl S; Rickmann A; Ludwig J; Stanzel BV; von Briesen H; Szurman P
    Transl Vis Sci Technol; 2019 May; 8(3):56. PubMed ID: 31293811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.