These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7981837)

  • 1. Gradient elution in micellar liquid chromatography. I. Micelle concentration gradient.
    Madamba-Tan LS; Strasters JK; Khaledi MG
    J Chromatogr A; 1994 Oct; 683(2):321-34. PubMed ID: 7981837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gradient elution in micellar liquid chromatography. II. Organic modifier gradients.
    Madamba-Tan LS; Strasters JK; Khaledi MG
    J Chromatogr A; 1994 Oct; 683(2):335-45. PubMed ID: 7981838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretive search of optimal isocratic and gradient separations in micellar liquid chromatography in extended organic solvent domains.
    Navarro-Huerta JA; Vargas-García AG; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Apr; 1616():460784. PubMed ID: 31864726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micellar liquid chromatography retention model based on mass-action concept of micelle formation.
    Loginova LP; Samokhina LV; Boichenko AP; Kulikov AU
    J Chromatogr A; 2006 Feb; 1104(1-2):190-7. PubMed ID: 16376898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of an ion chromatographic gradient retention model from isocratic elution experiments.
    Bolanca T; Cerjan-Stefanović S; Lusa M; Rogosić M; Ukić S
    J Chromatogr A; 2006 Jul; 1121(2):228-35. PubMed ID: 16698028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention models for isocratic and gradient elution in reversed-phase liquid chromatography.
    Nikitas P; Pappa-Louisi A
    J Chromatogr A; 2009 Mar; 1216(10):1737-55. PubMed ID: 18838140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COSMO-RS for the prediction of the retention behavior in micellar liquid chromatography based on partition coefficients of non-dissociated and dissociated solutes.
    Mehling T; Kloss L; Mushardt H; Ingram T; Smirnova I
    J Chromatogr A; 2013 Jan; 1273():66-72. PubMed ID: 23273634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possibilities of retention prediction in fast gradient liquid chromatography. Part 1: Comparison of separation on packed fully porous, nonporous and monolithic columns.
    Vyňuchalová K; Jandera P
    J Chromatogr A; 2013 Feb; 1278():37-45. PubMed ID: 23336942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benefits of solvent concentration pulses in retention time modelling of liquid chromatography.
    Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2019 Jul; 1597():76-88. PubMed ID: 30902430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of gradients of organic solvent in micellar liquid chromatography using DryLab(®): separation of basic compounds in urine samples.
    Rodenas-Montano J; Ortiz-Bolsico C; Ruiz-Angel MJ; García-Alvarez-Coque MC
    J Chromatogr A; 2014 May; 1344():31-41. PubMed ID: 24767834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling solvent strength and selectivity in micellar liquid chromatography: role of organic modifiers and micelles.
    Kord AS; Khaledi MG
    Anal Chem; 1992 Sep; 64(17):1894-900. PubMed ID: 1416041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous optimization of variables influencing selectivity and elution strength in micellar liquid chromatography. Effect of organic modifier and micelle concentration.
    Strasters JK; Breyer ED; Rodgers AH; Khaledi MG
    J Chromatogr; 1990 Jul; 511():17-33. PubMed ID: 2211909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isocratic and gradient elution chromatography: a comparison in terms of speed, retention reproducibility and quantitation.
    Schellinger AP; Carr PW
    J Chromatogr A; 2006 Mar; 1109(2):253-66. PubMed ID: 16460742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation for the convenient optimization of isocratic reversed-phase liquid chromatographic separations by varying temperature and mobile phase strength.
    Wolcott RG; Dolan JW; Snyder LR
    J Chromatogr A; 2000 Feb; 869(1-2):3-25. PubMed ID: 10720221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Programmed elution in comprehensive two-dimensional liquid chromatography.
    Jandera P
    J Chromatogr A; 2012 Sep; 1255():112-29. PubMed ID: 22443894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retention mechanisms in micellar liquid chromatography.
    Ruiz-Angel MJ; Carda-Broch S; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2009 Mar; 1216(10):1798-814. PubMed ID: 18838142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorinated bonded stationary phases in micellar liquid chromatography.
    Yang S; Kruk LF; Khaledi MG
    J Chromatogr A; 1994 Mar; 664(1):1-11. PubMed ID: 8012545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extension of the linear solvent strength retention model including a parameter that describes the elution strength changes in liquid chromatography.
    Baeza-Baeza JJ; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Mar; 1615():460757. PubMed ID: 31831147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous isocratic separation of phenolic acids and flavonoids using micellar liquid chromatography.
    Hadjmohammadi MR; Nazari SS
    J Sep Sci; 2013 Dec; 36(23):3667-72. PubMed ID: 24106139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retention mechanism and implications for selectivity for a group of dihydropyridines in ionic micellar liquid chromatography.
    Saz JM; Marina ML
    J Chromatogr A; 1994 Dec; 687(1):1-12. PubMed ID: 7849985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.