These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 7981837)
21. Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins. Jandera P; Kučerová Z; Urban J J Chromatogr A; 2011 Dec; 1218(49):8874-89. PubMed ID: 21742334 [TBL] [Abstract][Full Text] [Related]
22. Can the theory of gradient liquid chromatography be useful in solving practical problems? Jandera P J Chromatogr A; 2006 Sep; 1126(1-2):195-218. PubMed ID: 16787650 [TBL] [Abstract][Full Text] [Related]
23. Chromatographic characteristics of surfactant-mediated separations: micellar liquid chromatography vs ion pair chromatography. Kord AS; Khaledi MG Anal Chem; 1992 Sep; 64(17):1901-7. PubMed ID: 1416042 [TBL] [Abstract][Full Text] [Related]
24. Predicting the behaviour of polydisperse polymers in liquid chromatography under isocratic and gradient conditions. Schoenmakers P; Fitzpatrick F; Grothey R J Chromatogr A; 2002 Aug; 965(1-2):93-107. PubMed ID: 12236541 [TBL] [Abstract][Full Text] [Related]
25. Retention-activity relationship studies of benzodiazepines by micellar liquid chromatography. Molero-Monfort M; Sagrado S; Villanueva-Camañas RM; Medina-Hernández MJ Biomed Chromatogr; 1999 Oct; 13(6):394-400. PubMed ID: 10477896 [TBL] [Abstract][Full Text] [Related]
26. Aliphatic carboxylic acids as new modifiers for separation of 2,4-dinitrophenyl amino acids by micellar liquid chromatography. Boichenko AP; Kulikov AU; Loginova LP; Iwashchenko AL J Chromatogr A; 2007 Jul; 1157(1-2):252-9. PubMed ID: 17543981 [TBL] [Abstract][Full Text] [Related]
27. Closed form approximations to predict retention times and peak widths in gradient elution under conditions of sample volume overload and sample solvent mismatch. Rutan SC; Jeong LN; Carr PW; Stoll DR; Weber SG J Chromatogr A; 2021 Sep; 1653():462376. PubMed ID: 34293516 [TBL] [Abstract][Full Text] [Related]
28. Retention mechanisms for basic drugs in the submicellar and micellar reversed-phase liquid chromatographic modes. Ruiz-Angel MJ; Torres-Lapasió JR; García-Alvarez-Coque MC; Carda-Broch S Anal Chem; 2008 Dec; 80(24):9705-13. PubMed ID: 19072272 [TBL] [Abstract][Full Text] [Related]
29. Simultaneous optimization of pH and micelle concentration in micellar liquid chromatography. Rodgers AH; Strasters JK; Khaledi MG J Chromatogr; 1993 Apr; 636(2):203-12. PubMed ID: 8505401 [TBL] [Abstract][Full Text] [Related]
30. Development of dual gradient column in liquid chromatography. Oda T; Kitagawa S; Ohtani H J Chromatogr A; 2006 Feb; 1105(1-2):154-8. PubMed ID: 16185701 [TBL] [Abstract][Full Text] [Related]
31. Isocratic and gradient elution in micellar liquid chromatography with Brij-35. Peris-García E; Ortiz-Bolsico C; Baeza-Baeza JJ; García-Alvarez-Coque MC J Sep Sci; 2015 Jun; 38(12):2059-67. PubMed ID: 25866292 [TBL] [Abstract][Full Text] [Related]
32. Prediction of analyte retention for ion chromatography separations performed using elution profiles comprising multiple isocratic and gradient steps. Shellie RA; Ng BK; Dicinoski GW; Poynter SD; O'Reilly JW; Pohl CA; Haddad PR Anal Chem; 2008 Apr; 80(7):2474-82. PubMed ID: 18327920 [TBL] [Abstract][Full Text] [Related]
34. Simultaneous enhancement of separation selectivity and solvent strength in reversed-phase liquid chromatography using micelles in hydro-organic solvents. Khaledi MG; Strasters JK; Rodgers AH; Breyer ED Anal Chem; 1990 Jan; 62(2):130-6. PubMed ID: 2310010 [TBL] [Abstract][Full Text] [Related]
35. Experimental design and re-parameterization of the Neue-Kuss model for accurate and precise prediction of isocratic retention factors from gradient measurements in reversed phase liquid chromatography. Rutan SC; Cash K; Stoll DR J Chromatogr A; 2023 Nov; 1711():464443. PubMed ID: 37890376 [TBL] [Abstract][Full Text] [Related]
36. in vitro and in silico determination of oral, jejunum and Caco-2 human absorption of fatty acids and polyphenols. Micellar liquid chromatography. Stępnik KE; Malinowska I; Rój E Talanta; 2014 Dec; 130():265-73. PubMed ID: 25159408 [TBL] [Abstract][Full Text] [Related]
37. Simulation of elution profiles in liquid chromatography - III. Stationary phase gradients. Jeong LN; Rutan SC J Chromatogr A; 2018 Aug; 1564():128-136. PubMed ID: 29937121 [TBL] [Abstract][Full Text] [Related]
38. Micellar liquid chromatography for lipophilicity determination of new biologically active 1,3-purinodiones. Kawczak P; Vander Heyden Y; Nasal A; Baczek T; Drabczyñska A; Kieć-Kononowicz K; Kaliszan R J Sep Sci; 2010 Jun; 33(11):1546-57. PubMed ID: 20373294 [TBL] [Abstract][Full Text] [Related]
39. Fundamental equation of the dual flow rate-solvent gradient elution in liquid chromatography. Papachristos K; Nikitas P J Chromatogr A; 2009 Mar; 1216(12):2601-4. PubMed ID: 19217111 [TBL] [Abstract][Full Text] [Related]
40. Error analysis and performance of different retention models in the transference of data from/to isocratic/gradient elution. Vivó-Truyols G; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2003 Nov; 1018(2):169-81. PubMed ID: 14620568 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]