These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 7981839)
1. Gas chromatographic retention behaviour of polychlorinated naphthalenes on non-polar, polarizable, polar and smectic capillary columns. Järnberg U; Asplund L; Jakobsson E J Chromatogr A; 1994 Oct; 683(2):385-96. PubMed ID: 7981839 [TBL] [Abstract][Full Text] [Related]
2. [Quantitative relationship between gas chromatographic retention indices and structural parameters of polychlorinated naphthalenes]. Liu H; Wang Z; Liu S; Zhai Z Se Pu; 2005 Jul; 23(4):336-40. PubMed ID: 16250438 [TBL] [Abstract][Full Text] [Related]
3. Quantitative structure-retention relationships of polychlorinated naphthalenes in gas chromatography. Olivero J; Kannan K J Chromatogr A; 1999 Jul; 849(2):621-7. PubMed ID: 10457457 [TBL] [Abstract][Full Text] [Related]
4. Cross-column prediction of gas-chromatographic retention of polychlorinated biphenyls by artificial neural networks. D'Archivio AA; Incani A; Ruggieri F J Chromatogr A; 2011 Dec; 1218(48):8679-90. PubMed ID: 22000780 [TBL] [Abstract][Full Text] [Related]
5. Identification of indicator congeners and evaluation of emission pattern of polychlorinated naphthalenes in industrial stack gas emissions by statistical analyses. Liu G; Cai Z; Zheng M; Jiang X; Nie Z; Wang M Chemosphere; 2015 Jan; 118():194-200. PubMed ID: 25218874 [TBL] [Abstract][Full Text] [Related]
7. Fly ash-mediated formation of polychlorinated naphthalenes during secondary copper smelting and mechanistic aspects. Jiang X; Liu G; Wang M; Zheng M Chemosphere; 2015 Jan; 119():1091-1098. PubMed ID: 25460747 [TBL] [Abstract][Full Text] [Related]
8. Occurrence of polychlorinated naphthalenes, polychlorinated biphenyls and short-chain chlorinated paraffins in marine sediments from Barcelona (Spain). Castells P; Parera J; Santos FJ; Galceran MT Chemosphere; 2008 Feb; 70(9):1552-62. PubMed ID: 17910973 [TBL] [Abstract][Full Text] [Related]
9. Formation and chlorination of polychlorinated naphthalenes (PCNs) in the post-combustion zone during MSW combustion. Jansson S; Fick J; Marklund S Chemosphere; 2008 Jul; 72(8):1138-44. PubMed ID: 18514255 [TBL] [Abstract][Full Text] [Related]
10. Gas chromatography-triple quadrupole mass spectrometry for the determination of atmospheric polychlorinated naphthalenes. Li F; Jin J; Sun X; Wang X; Li Y; Shah SM; Chen J J Hazard Mater; 2014 Sep; 280():111-7. PubMed ID: 25151234 [TBL] [Abstract][Full Text] [Related]
11. Use of a polar ionic liquid as second column for the comprehensive two-dimensional GC separation of PCBs. Zapadlo M; Krupcík J; Májek P; Armstrong DW; Sandra P J Chromatogr A; 2010 Sep; 1217(37):5859-67. PubMed ID: 20696431 [TBL] [Abstract][Full Text] [Related]
12. The toxicological effects of halogenated naphthalenes: a review of aryl hydrocarbon receptor-mediated (dioxin-like) relative potency factors. Falandysz J; Fernandes A; Gregoraszczuk E; Rose M J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2014; 32(3):239-72. PubMed ID: 25226220 [TBL] [Abstract][Full Text] [Related]
13. Gas chromatographic retention of 180 polybrominated diphenyl ethers and prediction of relative retention under various operational conditions. Wei H; Yang R; Li A; Christensen ER; Rockne KJ J Chromatogr A; 2010 Apr; 1217(17):2964-72. PubMed ID: 20334866 [TBL] [Abstract][Full Text] [Related]
14. Application of gas-liquid chromatography to the analysis of essential oils. Part XVII. Fingerprinting of essential oils by temperature-programmed gas-liquid chromatography using capillary columns with non-polar stationary phases. Analytical methods committee. Analyst; 1997 Oct; 122(10):1167-74. PubMed ID: 9463975 [TBL] [Abstract][Full Text] [Related]
15. The use of silica nanoparticles for gas chromatographic separation. Na N; Cui X; De Beer T; Liu T; Tang T; Sajid M; Ouyang J J Chromatogr A; 2011 Jul; 1218(28):4552-8. PubMed ID: 21652043 [TBL] [Abstract][Full Text] [Related]
16. Dithienyl benzothiadiazole derivatives: a new type of stationary phases for capillary gas chromatography. Sun T; Tian L; Li J; Qi M; Fu R; Huang X J Chromatogr A; 2013 Dec; 1321():109-18. PubMed ID: 24238708 [TBL] [Abstract][Full Text] [Related]
17. Cross-column prediction of gas-chromatographic retention of polybrominated diphenyl ethers. D'Archivio AA; Giannitto A; Maggi MA J Chromatogr A; 2013 Jul; 1298():118-31. PubMed ID: 23726355 [TBL] [Abstract][Full Text] [Related]
18. Gas chromatographic retention indices of trimethylsilyl derivatives of mono- and diglycerides on capillary columns with non-polar stationary phases. Isidorov VA; Rusak M; Szczepaniak L; Witkowski S J Chromatogr A; 2007 Sep; 1166(1-2):207-11. PubMed ID: 17719055 [TBL] [Abstract][Full Text] [Related]
19. Enantiomeric separation of chiral polychlorinated biphenyls on beta-cyclodextrin capillary columns by means of heart-cut multidimensional gas chromatography and comprehensive two-dimensional gas chromatography. Application to food samples. Bordajandi LR; Korytár P; de Boer J; González MJ J Sep Sci; 2005 Feb; 28(2):163-71. PubMed ID: 15754824 [TBL] [Abstract][Full Text] [Related]
20. Development of quantitative structure gas chromatographic relative retention time models on seven stationary phases for 209 polybrominated diphenyl ether congeners. Wang Y; Li A; Liu H; Zhang Q; Ma W; Song W; Jiang G J Chromatogr A; 2006 Jan; 1103(2):314-28. PubMed ID: 16352309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]