BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 7982098)

  • 1. Regional extracellular norepinephrine responses to amphetamine and cocaine and effects of clonidine pretreatment.
    Florin SM; Kuczenski R; Segal DS
    Brain Res; 1994 Aug; 654(1):53-62. PubMed ID: 7982098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between low-dose amphetamine-induced arousal and extracellular norepinephrine and dopamine levels within prefrontal cortex.
    Berridge CW; Stalnaker TA
    Synapse; 2002 Dec; 46(3):140-9. PubMed ID: 12325041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of reserpine on extracellular caudate dopamine and hippocampus norepinephrine responses to amphetamine and cocaine: mechanistic and behavioral considerations.
    Florin SM; Kuczenski R; Segal DS
    J Pharmacol Exp Ther; 1995 Jul; 274(1):231-41. PubMed ID: 7616403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amphetamine, cocaine, and fencamfamine: relationship between locomotor and stereotypy response profiles and caudate and accumbens dopamine dynamics.
    Kuczenski R; Segal DS; Aizenstein ML
    J Neurosci; 1991 Sep; 11(9):2703-12. PubMed ID: 1715389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Difference in magnitude of psychostimulant-induced extracellular norepinephrine in the ventral tegmental area contributes to discrepant prefrontal dopamine outflow.
    Pan WH; Hsieh MC; Wu HH; Lin SK
    Addict Biol; 2007 Mar; 12(1):51-8. PubMed ID: 17407497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional norepinephrine response to amphetamine using dialysis: comparison with caudate dopamine.
    Kuczenski R; Segal DS
    Synapse; 1992 Jun; 11(2):164-9. PubMed ID: 1626314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurochemical and behavioral differences between d-methamphetamine and d-amphetamine in rats.
    Shoblock JR; Sullivan EB; Maisonneuve IM; Glick SD
    Psychopharmacology (Berl); 2003 Feb; 165(4):359-69. PubMed ID: 12491026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects on spontaneous and cocaine-induced behavior of pharmacological inhibition of noradrenergic and serotonergic systems.
    Carey RJ; DePalma G; Shanahan A; Damianopoulos EN; Müller CP; Huston JP
    Pharmacol Biochem Behav; 2008 Mar; 89(1):54-63. PubMed ID: 18155756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent effects of repeated amphetamine treatment on norepinephrine in the hypothalamus and hippocampus assessed with in vivo microdialysis.
    Camp DM; DeJonghe DK; Robinson TE
    Neuropsychopharmacology; 1997 Sep; 17(3):130-40. PubMed ID: 9272480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5-HT(6) receptor antagonism potentiates the behavioral and neurochemical effects of amphetamine but not cocaine.
    Frantz KJ; Hansson KJ; Stouffer DG; Parsons LH
    Neuropharmacology; 2002 Feb; 42(2):170-80. PubMed ID: 11804613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local influence of endogenous norepinephrine on extracellular dopamine in rat medial prefrontal cortex.
    Gresch PJ; Sved AF; Zigmond MJ; Finlay JM
    J Neurochem; 1995 Jul; 65(1):111-6. PubMed ID: 7790854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual differences in cocaine- and amphetamine-induced activation of male Sprague-Dawley rats: contribution of the dopamine transporter.
    Briegleb SK; Gulley JM; Hoover BR; Zahniser NR
    Neuropsychopharmacology; 2004 Dec; 29(12):2168-79. PubMed ID: 15292903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine.
    Kuczenski R; Segal DS
    J Neurochem; 1997 May; 68(5):2032-7. PubMed ID: 9109529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained impairment of α2A-adrenergic autoreceptor signaling mediates neurochemical and behavioral sensitization to amphetamine.
    Doucet EL; Bobadilla AC; Houades V; Lanteri C; Godeheu G; Lanfumey L; Sara SJ; Tassin JP
    Biol Psychiatry; 2013 Jul; 74(2):90-8. PubMed ID: 23332355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Norepinephrine in the prefrontal cortex is critical for amphetamine-induced reward and mesoaccumbens dopamine release.
    Ventura R; Cabib S; Alcaro A; Orsini C; Puglisi-Allegra S
    J Neurosci; 2003 Mar; 23(5):1879-85. PubMed ID: 12629192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex.
    Devoto P; Flore G; Pani L; Gessa GL
    Mol Psychiatry; 2001 Nov; 6(6):657-64. PubMed ID: 11673793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of acute and chronic reboxetine treatment on stress-induced monoamine efflux in the rat frontal cortex.
    Page ME; Lucki I
    Neuropsychopharmacology; 2002 Aug; 27(2):237-47. PubMed ID: 12093597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of catecholamine uptake blockers in the caudate-putamen and subregions of the medial prefrontal cortex of the rat.
    Mazei MS; Pluto CP; Kirkbride B; Pehek EA
    Brain Res; 2002 May; 936(1-2):58-67. PubMed ID: 11988230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic changes in sensitivity occur during the acute response to cocaine and methylphenidate.
    Kuczenski R; Segal DS
    Psychopharmacology (Berl); 1999 Nov; 147(1):96-103. PubMed ID: 10591874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine.
    Kuczenski R; Segal DS; Cho AK; Melega W
    J Neurosci; 1995 Feb; 15(2):1308-17. PubMed ID: 7869099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.