These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7982448)

  • 1. Inhibition by imidazoline and imidazolidine derivatives of glibenclamide-sensitive K+ currents in Xenopus oocytes.
    Sakuta H; Okamoto K
    Eur J Pharmacol; 1994 Jul; 259(3):223-31. PubMed ID: 7982448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antiarrhythmic drugs, clofilium and cibenzoline are potent inhibitors of glibenclamide-sensitive K+ currents in Xenopus oocytes.
    Sakuta H; Okamoto K; Watanabe Y
    Br J Pharmacol; 1993 Jul; 109(3):866-72. PubMed ID: 8358576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Ca2+ channel antagonists and their isomers on glibenclamide-sensitive K+ currents in follicle-enclosed Xenopus oocytes.
    Sakuta H; Okamoto K
    Eur J Pharmacol; 1994 Apr; 255(1-3):1-7. PubMed ID: 8026535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of local anesthetics and related drugs on endogenous glibenclamide-sensitive K+ channels in Xenopus oocytes.
    Yoneda I; Sakuta H; Okamoto K; Watanabe Y
    Eur J Pharmacol; 1993 Nov; 247(3):267-72. PubMed ID: 8307100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition by antidepressants of glibenclamide-sensitive K+ currents in follicle-enclosed Xenopus oocytes.
    Sakuta H
    Can J Physiol Pharmacol; 1994 Dec; 72(12):1586-8. PubMed ID: 7736352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiation by insulin and insulin-like growth factor-1 of glibenclamide-sensitive K+ currents in follicle-enclosed Xenopus oocytes.
    Sakuta H
    Eur J Pharmacol; 1994 Aug; 268(3):375-80. PubMed ID: 7805761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of glibenclamide-sensitive K+ channels in Xenopus oocytes by various calmodulin antagonists.
    Sakuta H; Sekiguchi M; Okamoto K; Sakai Y
    Eur J Pharmacol; 1992 Jul; 226(3):199-207. PubMed ID: 1330630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition by SKF 525A and quinacrine of endogenous glibenclamide-sensitive K+ channels in follicle-enclosed Xenopus oocytes.
    Sakuta H; Yoneda I
    Eur J Pharmacol; 1994 Jan; 252(1):117-21. PubMed ID: 8149992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition by histamine H1 receptor antagonists of endogenous glibenclamide-sensitive K+ channels in follicle-enclosed Xenopus oocytes.
    Sakuta H
    Eur J Pharmacol; 1994 Jan; 266(1):99-102. PubMed ID: 7907990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atrial natriuretic factor potentiates glibenclamide-sensitive K+ currents via the activation of receptor guanylate cyclase in follicle-enclosed Xenopus oocytes.
    Sakuta H; Okamoto K; Tandai M
    Eur J Pharmacol; 1994 May; 267(3):281-7. PubMed ID: 7916303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation by KRN2391 and nicorandil of glibenclamide-sensitive K+ channels in Xenopus oocytes.
    Sakuta H; Okamoto K
    Eur J Pharmacol; 1993 Feb; 244(3):277-83. PubMed ID: 8458402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antagonism of levcromakalim by imidazoline- and guanidine-derivatives in rat portal vein: involvement of the delayed rectifier.
    Ibbotson T; Edwards G; Weston AH
    Br J Pharmacol; 1993 Dec; 110(4):1556-64. PubMed ID: 8306101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blockade by antiarrhythmic drugs of glibenclamide-sensitive K+ channels in Xenopus oocytes.
    Sakuta H; Okamoto K; Watanabe Y
    Br J Pharmacol; 1992 Dec; 107(4):1061-7. PubMed ID: 1361399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two different types of channels are targets for potassium channel openers in Xenopus oocytes.
    Honoré E; Lazdunski M
    FEBS Lett; 1991 Aug; 287(1-2):75-9. PubMed ID: 1908792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of locus coeruleus neurons by non-I1/I2-type imidazoline receptors: an in vivo and in vitro electrophysiological study.
    Ugedo L; Pineda J; Ruiz-Ortega JA; Martín-Ruiz R
    Br J Pharmacol; 1998 Dec; 125(8):1685-94. PubMed ID: 9886760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification by cGMP of glibenclamide-sensitive K+ currents in Xenopus oocytes.
    Sakuta H; Okamoto K; Watanabe Y
    Jpn J Pharmacol; 1993 Mar; 61(3):259-62. PubMed ID: 8387123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blockade of cardiac ATP-sensitive K+ channel by cibenzoline targets its pore-forming subunit.
    Horie M; Watanuki M; Tsuji K; Ishida H; Ishida-Takahashi A; Yuzuki Y; Seino Y; Sasayama S
    J Cardiovasc Pharmacol; 2000 Mar; 35(3):434-42. PubMed ID: 10710130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The endogenous cannabinoid anandamide inhibits cromakalim-activated K+ currents in follicle-enclosed Xenopus oocytes.
    Oz M; Yang KH; Dinc M; Shippenberg TS
    J Pharmacol Exp Ther; 2007 Nov; 323(2):547-54. PubMed ID: 17682128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of a newly synthesized K+ channel opener, Y-26763, on noradrenaline-induced Ca2+ mobilization in smooth muscle of the rabbit mesenteric artery.
    Itoh T; Ito S; Shafiq J; Suzuki H
    Br J Pharmacol; 1994 Jan; 111(1):165-72. PubMed ID: 8012692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presynaptic imidazoline receptors and non-adrenoceptor [3H]-idazoxan binding sites in human cardiovascular tissues.
    Molderings GJ; Likungu J; Jakschik J; Göthert M
    Br J Pharmacol; 1997 Sep; 122(1):43-50. PubMed ID: 9298527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.