BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7982480)

  • 41. Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast.
    Yamaguchi-Iwai Y; Stearman R; Dancis A; Klausner RD
    EMBO J; 1996 Jul; 15(13):3377-84. PubMed ID: 8670839
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nonsense-mediated mRNA decay of the ferric and cupric reductase mRNAs FRE1 and FRE2 in Saccharomyces cerevisiae.
    Peccarelli M; Scott TD; Kebaara BW
    FEBS Lett; 2019 Nov; 593(22):3228-3238. PubMed ID: 31322728
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Iron and copper transport in yeast and its relevance to human disease.
    Askwith C; Kaplan J
    Trends Biochem Sci; 1998 Apr; 23(4):135-8. PubMed ID: 9584616
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport.
    Lin SJ; Pufahl RA; Dancis A; O'Halloran TV; Culotta VC
    J Biol Chem; 1997 Apr; 272(14):9215-20. PubMed ID: 9083054
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant.
    Hammacott JE; Williams PH; Cashmore AM
    Microbiology (Reading); 2000 Apr; 146 ( Pt 4)():869-876. PubMed ID: 10784045
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of cadmium and of YAP1 and CAD1/YAP2 genes on iron metabolism in the yeast Saccharomyces cerevisiae.
    Lesuisse E; Labbe P
    Microbiology (Reading); 1995 Nov; 141 ( Pt 11)():2937-43. PubMed ID: 8535522
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ace1 prevents intracellular copper accumulation by regulating Fet3 expression and thereby restricting Aft1 activity.
    Gaspar-Cordeiro A; Marques Caetano S; Amaral C; Rodrigues-Pousada C; Pimentel C
    FEBS J; 2018 May; 285(10):1861-1872. PubMed ID: 29604179
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of copper uptake in yeast reveals the copper transporter Ctr1p as a potential molecular target of saxitoxin.
    Cusick KD; Minkin SC; Dodani SC; Chang CJ; Wilhelm SW; Sayler GS
    Environ Sci Technol; 2012 Mar; 46(5):2959-66. PubMed ID: 22304436
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A widespread transposable element masks expression of a yeast copper transport gene.
    Knight SA; Labbé S; Kwon LF; Kosman DJ; Thiele DJ
    Genes Dev; 1996 Aug; 10(15):1917-29. PubMed ID: 8756349
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibition of the yeast metal reductase heme protein fre1 by nitric oxide (NO): a model for inhibition of NADPH oxidase by NO.
    Shinyashiki M; Pan CJ; Lopez BE; Fukuto JM
    Free Radic Biol Med; 2004 Sep; 37(5):713-23. PubMed ID: 15288128
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of copper depletion on iron uptake mediated by SFT, a stimulator of Fe transport.
    Yu J; Wessling-Resnick M
    J Biol Chem; 1998 Mar; 273(12):6909-15. PubMed ID: 9506995
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Iron uptake by the yeast Pichia guilliermondii. Flavinogenesis and reductive iron assimilation are co-regulated processes.
    Fedorovich D; Protchenko O; Lesuisse E
    Biometals; 1999 Dec; 12(4):295-300. PubMed ID: 10816728
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Specific aspartate residues in FET3 control high-affinity iron transport in Saccharomyces cerevisiae.
    Bonaccorsi di Patti MC; Felice MR; De Domenico I; Lania A; Alaleona F; Musci G
    Yeast; 2005 Jul; 22(9):677-87. PubMed ID: 16032772
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper.
    Morrissey JA; Williams PH; Cashmore AM
    Microbiology (Reading); 1996 Mar; 142 ( Pt 3)():485-492. PubMed ID: 8868423
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of iron uptake in Saccharomyces cerevisiae. The ferrireductase and Fe(II) transporter are regulated independently.
    Eide D; Davis-Kaplan S; Jordan I; Sipe D; Kaplan J
    J Biol Chem; 1992 Oct; 267(29):20774-81. PubMed ID: 1400393
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Copper repletion enhances apical iron uptake and transepithelial iron transport by Caco-2 cells.
    Han O; Wessling-Resnick M
    Am J Physiol Gastrointest Liver Physiol; 2002 Mar; 282(3):G527-33. PubMed ID: 11842003
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Kinetic comparison with neutrophil NADPH oxidase and yeast flavocytochrome b2.
    Kremer SM; Wood PM
    Eur J Biochem; 1992 Apr; 205(1):133-8. PubMed ID: 1555575
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The teleos of metallo-reduction and metallo-oxidation in eukaryotic iron and copper trafficking.
    Kosman DJ
    Metallomics; 2018 Mar; 10(3):370-377. PubMed ID: 29484341
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Homology modeling of the multicopper oxidase Fet3 gives new insights in the mechanism of iron transport in yeast.
    di Patti MC; Pascarella S; Catalucci D; Calabrese L
    Protein Eng; 1999 Nov; 12(11):895-7. PubMed ID: 10585494
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans.
    Jeeves RE; Mason RP; Woodacre A; Cashmore AM
    Yeast; 2011 Sep; 28(9):629-44. PubMed ID: 21823165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.