These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 7982494)
1. Roles of Arg231 and Tyr284 of Thermus thermophilus isocitrate dehydrogenase in the coenzyme specificity. Yaoi T; Miyazaki K; Oshima T FEBS Lett; 1994 Nov; 355(2):171-2. PubMed ID: 7982494 [TBL] [Abstract][Full Text] [Related]
2. Conversion of the coenzyme specificity of isocitrate dehydrogenase by module replacement. Yaoi T; Miyazaki K; Oshima T; Komukai Y; Go M J Biochem; 1996 May; 119(5):1014-8. PubMed ID: 8797105 [TBL] [Abstract][Full Text] [Related]
3. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase. Lee P; Colman RF Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490 [TBL] [Abstract][Full Text] [Related]
4. Substrate recognition of isocitrate dehydrogenase and 3-isopropylmalate dehydrogenase from Thermus thermophilus HB8. Yaoi T; Miyazaki K; Oshima T J Biochem; 1997 Jan; 121(1):77-81. PubMed ID: 9058195 [TBL] [Abstract][Full Text] [Related]
5. Co-enzyme specificity of 3-isopropylmalate dehydrogenase from Thermus thermophilus HB8. Miyazaki K; Oshima T Protein Eng; 1994 Mar; 7(3):401-3. PubMed ID: 8177889 [TBL] [Abstract][Full Text] [Related]
6. Expression, purification, and substrate specificity of isocitrate dehydrogenase from Thermus thermophilus HB8. Miyazaki K; Yaoi T; Oshima T Eur J Biochem; 1994 May; 221(3):899-903. PubMed ID: 8181473 [TBL] [Abstract][Full Text] [Related]
7. Electrostatic interaction between two domains of isocitrate dehydrogenase from Thermus thermophilus is important for the catalytic function and protein stability. Yaoi T; Hayashi-Iwasaki Y; Oshima T FEBS Lett; 1996 Dec; 398(2-3):228-30. PubMed ID: 8977112 [TBL] [Abstract][Full Text] [Related]
8. Alteration of coenzyme specificity of lactate dehydrogenase from Thermus thermophilus by introducing the loop region of NADP(H)-dependent malate dehydrogenase. Tomita T; Kuzuyama T; Nishiyama M Biosci Biotechnol Biochem; 2006 Sep; 70(9):2230-5. PubMed ID: 16960374 [TBL] [Abstract][Full Text] [Related]
9. Identification of cofactor discrimination sites in NAD-isocitrate dehydrogenase from Pyrococcus furiosus. Steen IH; Lien T; Madsen MS; Birkeland NK Arch Microbiol; 2002 Oct; 178(4):297-300. PubMed ID: 12209263 [TBL] [Abstract][Full Text] [Related]
10. His273 of 3-isopropylmalate dehydrogenase from Thermus thermophilus HB8 is involved in the coenzyme binding. Yaoi T; Miyazaki K; Oshima T Biochem Biophys Res Commun; 1995 May; 210(3):733-7. PubMed ID: 7763246 [TBL] [Abstract][Full Text] [Related]
11. Characterization of the nicotinamide adenine dinucleotides (NAD Wang P; Chen X; Yang J; Pei Y; Bian M; Zhu G Biochimie; 2019 May; 160():148-155. PubMed ID: 30876971 [TBL] [Abstract][Full Text] [Related]
12. Molecular cloning of the isocitrate dehydrogenase gene of an extreme thermophile, Thermus thermophilus HB8. Miyazaki K; Eguchi H; Yamagishi A; Wakagi T; Oshima T Appl Environ Microbiol; 1992 Jan; 58(1):93-8. PubMed ID: 1539996 [TBL] [Abstract][Full Text] [Related]
13. Protein engineering reveals ancient adaptive replacements in isocitrate dehydrogenase. Dean AM; Golding GB Proc Natl Acad Sci U S A; 1997 Apr; 94(7):3104-9. PubMed ID: 9096353 [TBL] [Abstract][Full Text] [Related]
14. Enzymatic characterization and functional implication of two structurally different isocitrate dehydrogenases from Xylella fastidiosa. Lv P; Tang W; Wang P; Cao Z; Zhu G Biotechnol Appl Biochem; 2018 Mar; 65(2):230-237. PubMed ID: 28220528 [TBL] [Abstract][Full Text] [Related]
15. A highly active decarboxylating dehydrogenase with rationally inverted coenzyme specificity. Chen R; Greer A; Dean AM Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11666-70. PubMed ID: 8524825 [TBL] [Abstract][Full Text] [Related]
16. Determinants of cofactor specificity in isocitrate dehydrogenase: structure of an engineered NADP+ --> NAD+ specificity-reversal mutant. Hurley JH; Chen R; Dean AM Biochemistry; 1996 May; 35(18):5670-8. PubMed ID: 8639526 [TBL] [Abstract][Full Text] [Related]
17. Evaluation by mutagenesis of the roles of His309, His315, and His319 in the coenzyme site of pig heart NADP-dependent isocitrate dehydrogenase. Huang YC; Colman RF Biochemistry; 2002 Apr; 41(17):5637-43. PubMed ID: 11969425 [TBL] [Abstract][Full Text] [Related]
18. Modeling substrate binding in Thermus thermophilus isopropylmalate dehydrogenase. Zhang T; Koshland DE Protein Sci; 1995 Jan; 4(1):84-92. PubMed ID: 7773180 [TBL] [Abstract][Full Text] [Related]
19. A unique homodimeric NAD⁺-linked isocitrate dehydrogenase from the smallest autotrophic eukaryote Ostreococcus tauri. Tang WG; Song P; Cao ZY; Wang P; Zhu GP FASEB J; 2015 Jun; 29(6):2462-72. PubMed ID: 25724193 [TBL] [Abstract][Full Text] [Related]
20. Evaluation by site-directed mutagenesis of aspartic acid residues in the metal site of pig heart NADP-dependent isocitrate dehydrogenase. Grodsky NB; Soundar S; Colman RF Biochemistry; 2000 Mar; 39(9):2193-200. PubMed ID: 10694384 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]