These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 7982886)

  • 41. Kinetics and thermodynamics of the RNase P RNA cleavage reaction: analysis of tRNA 3'-end variants.
    Hardt WD; Schlegl J; Erdmann VA; Hartmann RK
    J Mol Biol; 1995 Mar; 247(2):161-72. PubMed ID: 7535857
    [TBL] [Abstract][Full Text] [Related]  

  • 42. pH profiles of the kinetic parameters and photoinactivation of ribonuclease from Rhizopus sp.
    Komiyama T; Irie M
    J Biochem; 1972 Jun; 71(6):973-80. PubMed ID: 5074277
    [No Abstract]   [Full Text] [Related]  

  • 43. [Immobilized lipase from Rhizopus oryzae 14-14].
    Nekliudov AD; Shvedov BD; Tsibanov VV
    Prikl Biokhim Mikrobiol; 1981; 17(4):510-4. PubMed ID: 7279881
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Processing of the precursor to the catalytic RNA subunit of RNase P from Escherichia coli.
    Lundberg U; Altman S
    RNA; 1995 May; 1(3):327-34. PubMed ID: 7489504
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spinach chloroplast RNase P: a putative protein enzyme.
    Thomas BC; Gao L; Stomp D; Li X; Gegenheimer PA
    Nucleic Acids Symp Ser; 1995; (33):95-8. PubMed ID: 8643412
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase.
    Tibbitts TT; Murphy JE; Kantrowitz ER
    J Mol Biol; 1996 Apr; 257(3):700-15. PubMed ID: 8648634
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [The pH dependence of kinetic parameters of Penicillium brevicompactum RNAase].
    Krupianko VI
    Biokhimiia; 1976 Apr; 41(4):703-7. PubMed ID: 14734
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interaction of substrate uridyl 3',5'-adenosine with ribonuclease A: a molecular dynamics study.
    Seshadri K; Rao VS; Vishveshwara S
    Biophys J; 1995 Dec; 69(6):2185-94. PubMed ID: 8599627
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Broad-specificity endoribonucleases and mRNA degradation in Escherichia coli.
    Srivastava SK; Cannistraro VJ; Kennell D
    J Bacteriol; 1992 Jan; 174(1):56-62. PubMed ID: 1309522
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Primary structure of a base non-specific and adenylic acid preferential ribonuclease from Aspergillus saitoi.
    Watanabe H; Naitoh A; Suyama Y; Inokuchi N; Shimada H; Koyama T; Ohgi K; Irie M
    J Biochem; 1990 Aug; 108(2):303-10. PubMed ID: 2229029
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ethidium-dependent uncoupling of substrate binding and cleavage by Escherichia coli ribonuclease III.
    Calin-Jageman I; Amarasinghe AK; Nicholson AW
    Nucleic Acids Res; 2001 May; 29(9):1915-25. PubMed ID: 11328875
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence for proton transfer in the rate-limiting step of a fast-cleaving Varkud satellite ribozyme.
    Smith MD; Collins RA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5818-23. PubMed ID: 17389378
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetic studies on the depolymerization of polyadenylic acid by ribonuclease A.
    Avramova ZV; Dudkin SM; Karabashyan LV
    Mol Biol; 1975 Jan; 8(4):401-5. PubMed ID: 236507
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of two forms of base non-specific and adenylic acid preferential ribonuclease from Aspergillus saitoi.
    Ohgi K; Watanabe H; Takizawa M; Kimura Y; Matsutani K; Kakinuma E; Irie M
    J Biochem; 1983 Sep; 94(3):767-75. PubMed ID: 6417118
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The surfactant-induced conformational and activity alterations in Rhizopus niveus lipase.
    Alam P; Rabbani G; Badr G; Badr BM; Khan RH
    Cell Biochem Biophys; 2015 Mar; 71(2):1199-206. PubMed ID: 25424356
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lipase-catalyzed preparation of S-propranolol in presence of hydroxypropyl beta-cyclodextrins.
    Avila-González R; Pérez-Gilabert M; García-Carmona F
    J Biosci Bioeng; 2005 Oct; 100(4):423-8. PubMed ID: 16310732
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recognition of a pre-tRNA substrate by the Bacillus subtilis RNase P holoenzyme.
    Loria A; Niranjanakumari S; Fierke CA; Pan T
    Biochemistry; 1998 Nov; 37(44):15466-73. PubMed ID: 9799509
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A comparative study on the cleavage of stereoisomeric uridylyl(3',5')uridines [D,D-, D,L- and L,D-UpU] by acid, base and metal ion catalysts.
    Mikkola S; Mikhailov SN; Efimtseva E; Neuvonen K; Oivanen M; Beigelman L; Lönnberg H
    Orig Life Evol Biosph; 2002 Aug; 32(4):303-10. PubMed ID: 12458735
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rapid determination of ribonuclease and microanalysis of heparin with a SAW/conductance sensor.
    Wang R; Cai Q; Wei W; Nie L; Yao S; Liu C; Jiang T
    Talanta; 1997 Apr; 44(4):641-7. PubMed ID: 18966785
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.