These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 7982928)

  • 1. Probing protein-protein interactions. The ribose-binding protein in bacterial transport and chemotaxis.
    Björkman AJ; Binnie RA; Zhang H; Cole LB; Hermodson MA; Mowbray SL
    J Biol Chem; 1994 Dec; 269(48):30206-11. PubMed ID: 7982928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identical mutations at corresponding positions in two homologous proteins with nonidentical effects.
    Björkman AJ; Binnie RA; Cole LB; Zhang H; Hermodson MA; Mowbray SL
    J Biol Chem; 1994 Apr; 269(15):11196-200. PubMed ID: 8157648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional mapping of the surface of Escherichia coli ribose-binding protein: mutations that affect chemotaxis and transport.
    Binnie RA; Zhang H; Mowbray S; Hermodson MA
    Protein Sci; 1992 Dec; 1(12):1642-51. PubMed ID: 1304894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribose and glucose-galactose receptors. Competitors in bacterial chemotaxis.
    Mowbray SL
    J Mol Biol; 1992 Sep; 227(2):418-40. PubMed ID: 1328650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetically probing the regions of ribose-binding protein involved in permease interaction.
    Eym Y; Park Y; Park C
    Mol Microbiol; 1996 Aug; 21(4):695-702. PubMed ID: 8878033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1.7 A X-ray structure of the periplasmic ribose receptor from Escherichia coli.
    Mowbray SL; Cole LB
    J Mol Biol; 1992 May; 225(1):155-75. PubMed ID: 1583688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of folding on the export of ribose-binding protein studied with the genetically isolated suppressors for the signal sequence mutation.
    Song T; Park C
    J Mol Biol; 1995 Oct; 253(2):304-12. PubMed ID: 7563091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic approach to the role of tryptophan residues in the activities and fluorescence of a bacterial periplasmic maltose-binding protein.
    Martineau P; Szmelcman S; Spurlino JC; Quiocho FA; Hofnung M
    J Mol Biol; 1990 Jul; 214(1):337-52. PubMed ID: 2196376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural prediction of sugar-binding proteins functional in chemotaxis and transport.
    Argos P; Mahoney WC; Hermodson MA; Hanei M
    J Biol Chem; 1981 May; 256(9):4357-61. PubMed ID: 6783660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The 2.3-A resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis.
    Spurlino JC; Lu GY; Quiocho FA
    J Biol Chem; 1991 Mar; 266(8):5202-19. PubMed ID: 2002054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of D-allose binding protein from Escherichia coli bound to D-allose at 1.8 A resolution.
    Chaudhuri BN; Ko J; Park C; Jones TA; Mowbray SL
    J Mol Biol; 1999 Mar; 286(5):1519-31. PubMed ID: 10064713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic interactions in protein-carbohydrate complexes. Tryptophan residues in the periplasmic maltodextrin receptor for active transport and chemotaxis.
    Spurlino JC; Rodseth LE; Quiocho FA
    J Mol Biol; 1992 Jul; 226(1):15-22. PubMed ID: 1619648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and folding of precursor and mature tryptophan-substituted ribose binding protein of Escherichia coli.
    Lee H; Chi SW; Kang M; Baek K; Kim H
    Arch Biochem Biophys; 1996 Apr; 328(1):78-84. PubMed ID: 8638941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residues in the alpha helix 7 of the bacterial maltose binding protein which are important in interactions with the Mal FGK2 complex.
    Szmelcman S; Sassoon N; Hofnung M
    Protein Sci; 1997 Mar; 6(3):628-36. PubMed ID: 9070445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP modulates subunit-subunit interactions in an ATP-binding cassette transporter (MalFGK2) determined by site-directed chemical cross-linking.
    Hunke S; Mourez M; Jehanno M; Dassa E; Schneider E
    J Biol Chem; 2000 May; 275(20):15526-34. PubMed ID: 10809785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of tryptophans 371 and 395 in the binding of antibiotics and the transport of sugars by the D-galactose-H+ symport protein (GalP) from Escherichia coli.
    McDonald TP; Walmsley AR; Martin GE; Henderson PJ
    J Biol Chem; 1995 Dec; 270(51):30359-70. PubMed ID: 8530461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations that affect the folding of ribose-binding protein selected as suppressors of a defect in export in Escherichia coli.
    Teschke CM; Kim J; Song T; Park S; Park C; Randall LL
    J Biol Chem; 1991 Jun; 266(18):11789-96. PubMed ID: 1904869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational changes of three periplasmic receptors for bacterial chemotaxis and transport: the maltose-, glucose/galactose- and ribose-binding proteins.
    Shilton BH; Flocco MM; Nilsson M; Mowbray SL
    J Mol Biol; 1996 Nov; 264(2):350-63. PubMed ID: 8951381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of wild-type and mutant signal sequences of Escherichia coli ribose binding protein.
    Yi GS; Choi BS; Kim H
    Biophys J; 1994 May; 66(5):1604-11. PubMed ID: 8061209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation of a single MalK subunit severely impairs maltose transport activity in Escherichia coli.
    Davidson AL; Sharma S
    J Bacteriol; 1997 Sep; 179(17):5458-64. PubMed ID: 9287001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.