These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 7983047)
1. Importance of the region around lysine 196 for catalytic activity of adenylyl cyclase from Escherichia coli. Amin N; Peterkofsky A J Biol Chem; 1994 Dec; 269(49):31074-9. PubMed ID: 7983047 [TBL] [Abstract][Full Text] [Related]
2. A-type ATP binding consensus sequences are critical for the catalytic activity of the calmodulin-sensitive adenylyl cyclase from Bacillus anthracis. Xia ZG; Storm DR J Biol Chem; 1990 Apr; 265(12):6517-20. PubMed ID: 2108958 [TBL] [Abstract][Full Text] [Related]
3. Requirement for GLY-60 of Escherichia coli adenylyl cyclase for ATP binding and catalytic activity. Amin N; Peterkofsky A Biochem Biophys Res Commun; 1992 Feb; 182(3):1218-25. PubMed ID: 1540166 [TBL] [Abstract][Full Text] [Related]
4. Site-directed mutagenesis of lysine 58 in a putative ATP-binding domain of the calmodulin-sensitive adenylate cyclase from Bordetella pertussis abolishes catalytic activity. Au DC; Masure HR; Storm DR Biochemistry; 1989 Apr; 28(7):2772-6. PubMed ID: 2545236 [TBL] [Abstract][Full Text] [Related]
5. The Escherichia coli adenylyl cyclase complex: requirement of PTS proteins for stimulation by nucleotides. Peterkofsky A; Seok YJ; Amin N; Thapar R; Lee SY; Klevit RE; Waygood EB; Anderson JW; Gruschus J; Huq H Biochemistry; 1995 Jul; 34(28):8950-9. PubMed ID: 7619794 [TBL] [Abstract][Full Text] [Related]
6. Interactions of forskolin and ATP with the cytosolic domains of mammalian adenylyl cyclase. Dessauer CW; Scully TT; Gilman AG J Biol Chem; 1997 Aug; 272(35):22272-7. PubMed ID: 9268376 [TBL] [Abstract][Full Text] [Related]
7. Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis. Liu Y; Ruoho AE; Rao VD; Hurley JH Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13414-9. PubMed ID: 9391039 [TBL] [Abstract][Full Text] [Related]
8. The conserved asparagine and arginine are essential for catalysis of mammalian adenylyl cyclase. Yan SZ; Huang ZH; Shaw RS; Tang WJ J Biol Chem; 1997 May; 272(19):12342-9. PubMed ID: 9139678 [TBL] [Abstract][Full Text] [Related]
9. Mutational analysis of the Mycobacterium tuberculosis Rv1625c adenylyl cyclase: residues that confer nucleotide specificity contribute to dimerization. Shenoy AR; Srinivasan N; Subramaniam M; Visweswariah SS FEBS Lett; 2003 Jun; 545(2-3):253-9. PubMed ID: 12804785 [TBL] [Abstract][Full Text] [Related]
10. Modulation of Escherichia coli adenylyl cyclase activity by catalytic-site mutants of protein IIA(Glc) of the phosphoenolpyruvate:sugar phosphotransferase system. Reddy P; Kamireddi M J Bacteriol; 1998 Feb; 180(3):732-6. PubMed ID: 9457881 [TBL] [Abstract][Full Text] [Related]
11. Eukaryotic-like adenylyl cyclases in Mycobacterium tuberculosis H37Rv: cloning and characterization. Reddy SK; Kamireddi M; Dhanireddy K; Young L; Davis A; Reddy PT J Biol Chem; 2001 Sep; 276(37):35141-9. PubMed ID: 11431477 [TBL] [Abstract][Full Text] [Related]
12. Autoinhibitory mechanism and activity-related structural changes in a mycobacterial adenylyl cyclase. Barathy DV; Bharambe NG; Syed W; Zaveri A; Visweswariah SS; Colaςo M; Misquith S; Suguna K J Struct Biol; 2015 Jun; 190(3):304-13. PubMed ID: 25916753 [TBL] [Abstract][Full Text] [Related]
13. Role of the nucleotidyl cyclase helical domain in catalytically active dimer formation. Vercellino I; Rezabkova L; Olieric V; Polyhach Y; Weinert T; Kammerer RA; Jeschke G; Korkhov VM Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9821-E9828. PubMed ID: 29087332 [TBL] [Abstract][Full Text] [Related]
14. Biochemical analysis of Escherichia coli selenophosphate synthetase mutants. Lysine 20 is essential for catalytic activity and cysteine 17/19 for 8-azido-ATP derivatization. Kim IY; Veres Z; Stadtman TC J Biol Chem; 1993 Dec; 268(36):27020-5. PubMed ID: 8262938 [TBL] [Abstract][Full Text] [Related]
15. Identification of regulatory residues of the yeast adenylyl cyclase. Feger G; De Vendittis E; Vitelli A; Masturzo P; Zahn R; Verrotti AC; Kavounis C; Pal GP; Fasano O EMBO J; 1991 Feb; 10(2):349-59. PubMed ID: 1991451 [TBL] [Abstract][Full Text] [Related]
16. Substrate specificity determinants of class III nucleotidyl cyclases. Bharambe NG; Barathy DV; Syed W; Visweswariah SS; Colaςo M; Misquith S; Suguna K FEBS J; 2016 Oct; 283(20):3723-3738. PubMed ID: 27542992 [TBL] [Abstract][Full Text] [Related]
17. Mutational analysis gives insight into substrate preferences of a nucleotidyl cyclase from Mycobacterium avium. Syed W; Colaςo M; Misquith S PLoS One; 2014; 9(10):e109358. PubMed ID: 25360748 [TBL] [Abstract][Full Text] [Related]
18. Lysine 106 of the putative catalytic ATP-binding site of the Bacillus subtilis SecA protein is required for functional complementation of Escherichia coli secA mutants in vivo. Klose M; Schimz KL; van der Wolk J; Driessen AJ; Freudl R J Biol Chem; 1993 Feb; 268(6):4504-10. PubMed ID: 8440733 [TBL] [Abstract][Full Text] [Related]
19. Characterization of ATP and calmodulin-binding properties of a truncated form of Bacillus anthracis adenylate cyclase. Labruyère E; Mock M; Ladant D; Michelson S; Gilles AM; Laoide B; Bârzu O Biochemistry; 1990 May; 29(20):4922-8. PubMed ID: 2114169 [TBL] [Abstract][Full Text] [Related]
20. Mutations uncover a role for two magnesium ions in the catalytic mechanism of adenylyl cyclase. Zimmermann G; Zhou D; Taussig R J Biol Chem; 1998 Jul; 273(31):19650-5. PubMed ID: 9677392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]