These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 7983093)
1. Numerical analysis of extracellular fluid flow and chemical species transport around and within porous bioactive glass. García AJ; Ducheyne P J Biomed Mater Res; 1994 Aug; 28(8):947-60. PubMed ID: 7983093 [TBL] [Abstract][Full Text] [Related]
2. A finite element study of mechanical stimuli in scaffolds for bone tissue engineering. Sandino C; Planell JA; Lacroix D J Biomech; 2008; 41(5):1005-14. PubMed ID: 18255075 [TBL] [Abstract][Full Text] [Related]
3. Engineered bone culture in a perfusion bioreactor: a 2D computational study of stationary mass and momentum transport. Pierre J; Oddou C Comput Methods Biomech Biomed Engin; 2007 Dec; 10(6):429-38. PubMed ID: 17852175 [TBL] [Abstract][Full Text] [Related]
4. A fiber matrix model for interstitial fluid flow and permeability in ligaments and tendons. Chen CT; Malkus DS; Vanderby R Biorheology; 1998; 35(2):103-18. PubMed ID: 10193483 [TBL] [Abstract][Full Text] [Related]
5. Computational mechanobiology to study the effect of surface geometry on peri-implant tissue differentiation. Andreykiv A; van Keulen F; Prendergast PJ J Biomech Eng; 2008 Oct; 130(5):051015. PubMed ID: 19045522 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
7. Effect of serum proteins on osteoblast adhesion to surface-modified bioactive glass and hydroxyapatite. El-Ghannam A; Ducheyne P; Shapiro IM J Orthop Res; 1999 May; 17(3):340-5. PubMed ID: 10376721 [TBL] [Abstract][Full Text] [Related]
8. Bioactive glass particles of narrow size range for the treatment of oral bone defects: a 1-24 month experiment with several materials and particle sizes and size ranges. Schepers EJ; Ducheyne P J Oral Rehabil; 1997 Mar; 24(3):171-81. PubMed ID: 9131472 [TBL] [Abstract][Full Text] [Related]
9. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage. Babalola OM; Bonassar LJ J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968 [TBL] [Abstract][Full Text] [Related]
10. The interplay of diffusional and electrophoretic transport mechanisms of charged solutes in the liquid film surrounding charged nonporous adsorbent particles employed in finite bath adsorption systems. Grimes BA; Liapis AI J Colloid Interface Sci; 2002 Apr; 248(2):504-20. PubMed ID: 16290557 [TBL] [Abstract][Full Text] [Related]
11. Residence time distribution in a packed bed bioreactor containing porous glass particles: influence of the presence of immobilized cells. De Backer L; Baron G J Chem Technol Biotechnol; 1994 Mar; 59(3):297-302. PubMed ID: 7764814 [TBL] [Abstract][Full Text] [Related]
12. Response of human osteoblasts to implant materials: integrin-mediated adhesion. Gronowicz G; McCarthy MB J Orthop Res; 1996 Nov; 14(6):878-87. PubMed ID: 8982129 [TBL] [Abstract][Full Text] [Related]
13. Biologic significance of surface microroughing in bone incorporation of porous bioactive glass implants. Itälä A; Koort J; Ylänen HO; Hupa M; Aro HT J Biomed Mater Res A; 2003 Nov; 67(2):496-503. PubMed ID: 14566790 [TBL] [Abstract][Full Text] [Related]
14. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Akay G; Birch MA; Bokhari MA Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889 [TBL] [Abstract][Full Text] [Related]
15. Type I collagen production by osteoblast-like cells cultured in contact with different bioactive glasses. Bosetti M; Zanardi L; Hench L; Cannas M J Biomed Mater Res A; 2003 Jan; 64(1):189-95. PubMed ID: 12483713 [TBL] [Abstract][Full Text] [Related]
16. Characterization of microrough bioactive glass surface: surface reactions and osteoblast responses in vitro. Itälä A; Ylänen HO; Yrjans J; Heino T; Hentunen T; Hupa M; Aro HT J Biomed Mater Res; 2002 Dec; 62(3):404-11. PubMed ID: 12209926 [TBL] [Abstract][Full Text] [Related]
17. Forced and natural convective drying of trehalose/water thin films: implication in the desiccation preservation of Mammalian cells. Chen B; Fowler A; Bhowmick S J Biomech Eng; 2006 Jun; 128(3):335-46. PubMed ID: 16706583 [TBL] [Abstract][Full Text] [Related]
18. The effect of bioactive glasses on bone marrow stromal cells differentiation. Bosetti M; Cannas M Biomaterials; 2005 Jun; 26(18):3873-9. PubMed ID: 15626435 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow. Park JY; Yoo SJ; Hwang CM; Lee SH Lab Chip; 2009 Aug; 9(15):2194-202. PubMed ID: 19606296 [TBL] [Abstract][Full Text] [Related]
20. Influence of physicochemical reactions of bioactive glass on the behavior and activity of human osteoblasts in vitro. Josset Y; Nasrallah F; Jallot E; Lorenzato M; Dufour-Mallet O; Balossier G; Laurent-Maquin D J Biomed Mater Res A; 2003 Dec; 67(4):1205-18. PubMed ID: 14624507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]