These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 7983521)

  • 1. The reticulospinal glutamate synapse in lamprey: plasticity and presynaptic variability.
    Brodin L; Shupliakov O; Pieribone VA; Hellgren J; Hill RH
    J Neurophysiol; 1994 Aug; 72(2):592-604. PubMed ID: 7983521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of apamin-sensitive k(ca) channels for reticulospinal synaptic transmission to motoneuron and for the afterhyperpolarization.
    Cangiano L; Wallén P; Grillner S
    J Neurophysiol; 2002 Jul; 88(1):289-99. PubMed ID: 12091554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous and exogenous dopamine presynaptically inhibits glutamatergic reticulospinal transmission via an action of D2-receptors on N-type Ca2+ channels.
    Svensson E; Wikström MA; Hill RH; Grillner S
    Eur J Neurosci; 2003 Feb; 17(3):447-54. PubMed ID: 12581163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium channels involved in synaptic transmission from reticulospinal axons in lamprey.
    Krieger P; Büschges A; el Manira A
    J Neurophysiol; 1999 Apr; 81(4):1699-705. PubMed ID: 10200205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological and anatomical characteristics of reticulospinalneurones in lamprey.
    Wickelgren WO
    J Physiol; 1977 Aug; 270(1):89-114. PubMed ID: 915826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monosynaptic excitatory amino acid transmission from the posterior rhombencephalic reticular nucleus to spinal neurons involved in the control of locomotion in lamprey.
    Ohta Y; Grillner S
    J Neurophysiol; 1989 Nov; 62(5):1079-89. PubMed ID: 2555456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium influx-independent depression of transmitter release by 5-HT at lamprey spinal cord synapses.
    Takahashi M; Freed R; Blackmer T; Alford S
    J Physiol; 2001 Apr; 532(Pt 2):323-36. PubMed ID: 11306653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of pharmacologically distinct metabotropic glutamate receptors depresses reticulospinal-evoked monosynaptic EPSPs in the lamprey spinal cord.
    Krieger P; el Manira A; Grillner S
    J Neurophysiol; 1996 Dec; 76(6):3834-41. PubMed ID: 8985881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary afferents evoke excitatory amino acid receptor-mediated EPSPs that are modulated by presynaptic GABAB receptors in lamprey.
    Christenson J; Grillner S
    J Neurophysiol; 1991 Dec; 66(6):2141-9. PubMed ID: 1687474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large, deep layer pyramid-pyramid single axon EPSPs in slices of rat motor cortex display paired pulse and frequency-dependent depression, mediated presynaptically and self-facilitation, mediated postsynaptically.
    Thomson AM; Deuchars J; West DC
    J Neurophysiol; 1993 Dec; 70(6):2354-69. PubMed ID: 8120587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repetitive stimulation induced potentiation of excitatory transmission in the rat dorsal horn: an in vitro study.
    Jeftinija S; Urban L
    J Neurophysiol; 1994 Jan; 71(1):216-28. PubMed ID: 7908954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamate metabotropic receptor mediated depression of synaptic inputs to lamprey reticulospinal neurones.
    Alford S; Dubuc R
    Brain Res; 1993 Mar; 605(1):175-9. PubMed ID: 8096788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic transfer at a vertebrate central nervous system synapse.
    Martin AR; Ringham GL
    J Physiol; 1975 Oct; 251(2):409-26. PubMed ID: 171378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presynaptic and interactive peptidergic modulation of reticulospinal synaptic inputs in the lamprey.
    Parker D
    J Neurophysiol; 2000 May; 83(5):2497-507. PubMed ID: 10805651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMDA receptor-mediated control of presynaptic calcium and neurotransmitter release.
    Cochilla AJ; Alford S
    J Neurosci; 1999 Jan; 19(1):193-205. PubMed ID: 9870950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Synaptic effects induced in lamprey motor neurons by direct stimulation of individual presynaptic fibers].
    Batueva IV; Shapovalov AI
    Neirofiziologiia; 1977; 9(4):390-6. PubMed ID: 198686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evoked depolarizing and hyperpolarizing potentials in reticulospinal axons of lamprey.
    Matthews G; Wickelgren WO
    J Physiol; 1978 Jun; 279():551-67. PubMed ID: 671362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable properties in a single class of excitatory spinal synapse.
    Parker D
    J Neurosci; 2003 Apr; 23(8):3154-63. PubMed ID: 12716923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual potentiation of vestibular responses in lamprey reticulospinal neurons.
    Ullén F; Deliagina TG; Orlovsky GN; Grillner S
    Eur J Neurosci; 1996 Nov; 8(11):2298-307. PubMed ID: 8950094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.