BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

681 related articles for article (PubMed ID: 7983548)

  • 1. Neural basis for motor learning in the vestibuloocular reflex of primates. II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocculus and ventral paraflocculus.
    Lisberger SG; Pavelko TA; Bronte-Stewart HM; Stone LS
    J Neurophysiol; 1994 Aug; 72(2):954-73. PubMed ID: 7983548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural basis for motor learning in the vestibuloocular reflex of primates. I. Changes in the responses of brain stem neurons.
    Lisberger SG; Pavelko TA; Broussard DM
    J Neurophysiol; 1994 Aug; 72(2):928-53. PubMed ID: 7983547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of learning.
    Lisberger SG
    J Neurophysiol; 1994 Aug; 72(2):974-98. PubMed ID: 7983549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Responses during eye movements of brain stem neurons that receive monosynaptic inhibition from the flocculus and ventral paraflocculus in monkeys.
    Lisberger SG; Pavelko TA; Broussard DM
    J Neurophysiol; 1994 Aug; 72(2):909-27. PubMed ID: 7983546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the cerebellar flocculus region in cancellation of the VOR during passive whole body rotation.
    Belton T; McCrea RA
    J Neurophysiol; 2000 Sep; 84(3):1599-613. PubMed ID: 10980030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Firing behavior of brain stem neurons during voluntary cancellation of the horizontal vestibuloocular reflex. II. Eye movement related neurons.
    Cullen KE; Chen-Huang C; McCrea RA
    J Neurophysiol; 1993 Aug; 70(2):844-56. PubMed ID: 8410176
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation.
    Shinmei Y; Yamanobe T; Fukushima J; Fukushima K
    J Neurophysiol; 2002 Apr; 87(4):1836-49. PubMed ID: 11929905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Firing behavior of brain stem neurons during voluntary cancellation of the horizontal vestibuloocular reflex. I. Secondary vestibular neurons.
    Cullen KE; McCrea RA
    J Neurophysiol; 1993 Aug; 70(2):828-43. PubMed ID: 8410175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation.
    Lisberger SG; Fuchs AF
    J Neurophysiol; 1978 May; 41(3):733-63. PubMed ID: 96225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebellar role in adaptation of the goldfish vestibuloocular reflex.
    Pastor AM; de la Cruz RR; Baker R
    J Neurophysiol; 1994 Sep; 72(3):1383-94. PubMed ID: 7807219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. II. Complex spikes.
    Stone LS; Lisberger SG
    J Neurophysiol; 1990 May; 63(5):1262-75. PubMed ID: 2358873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signals used to compute errors in monkey vestibuloocular reflex: possible role of flocculus.
    Lisberger SG; Miles FA; Zee DS
    J Neurophysiol; 1984 Dec; 52(6):1140-53. PubMed ID: 6335171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I. Simple spikes.
    Stone LS; Lisberger SG
    J Neurophysiol; 1990 May; 63(5):1241-61. PubMed ID: 2358872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partial ablations of the flocculus and ventral paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR.
    Rambold H; Churchland A; Selig Y; Jasmin L; Lisberger SG
    J Neurophysiol; 2002 Feb; 87(2):912-24. PubMed ID: 11826056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the cerebellar flocculus region in the coordination of eye and head movements during gaze pursuit.
    Belton T; McCrea RA
    J Neurophysiol; 2000 Sep; 84(3):1614-26. PubMed ID: 10980031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different roles of flocculus and ventral paraflocculus for oculomotor control in the primate.
    Nagao S
    Neuroreport; 1992 Jan; 3(1):13-6. PubMed ID: 1611029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of smooth pursuit-related neurons in the monkey periarcuate cortex during pursuit and passive whole-body rotation.
    Fukushima K; Sato T; Fukushima J; Shinmei Y; Kaneko CR
    J Neurophysiol; 2000 Jan; 83(1):563-87. PubMed ID: 10634896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertical Purkinje cells of the monkey floccular lobe: simple-spike activity during pursuit and passive whole body rotation.
    Fukushima K; Fukushima J; Kaneko CR; Fuchs AF
    J Neurophysiol; 1999 Aug; 82(2):787-803. PubMed ID: 10444677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual tracking in monkeys: evidence for short-latency suppression of the vestibuloocular reflex.
    Lisberger SG
    J Neurophysiol; 1990 Apr; 63(4):676-88. PubMed ID: 2341868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational study on monkey VOR adaptation and smooth pursuit based on the parallel control-pathway theory.
    Tabata H; Yamamoto K; Kawato M
    J Neurophysiol; 2002 Apr; 87(4):2176-89. PubMed ID: 11929935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.