These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 7984094)
1. Rhizobium meliloti DctD, a sigma 54-dependent transcriptional activator, may be negatively controlled by a subdomain in the C-terminal end of its two-component receiver module. Gu B; Lee JH; Hoover TR; Scholl D; Nixon BT Mol Microbiol; 1994 Jul; 13(1):51-66. PubMed ID: 7984094 [TBL] [Abstract][Full Text] [Related]
2. Negative regulation of sigma 54-dependent dctA expression by the transcriptional activator DctD. Labes M; Finan TM J Bacteriol; 1993 May; 175(9):2674-81. PubMed ID: 8478332 [TBL] [Abstract][Full Text] [Related]
3. Tandem DctD-binding sites of the Rhizobium meliloti dctA upstream activating sequence are essential for optimal function despite a 50- to 100-fold difference in affinity for DctD. Ledebur H; Nixon BT Mol Microbiol; 1992 Dec; 6(23):3479-92. PubMed ID: 1474893 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the C4-dicarboxylate transport genes of Rhizobium meliloti: nucleotide sequence and deduced products of dctA, dctB, and dctD. Watson RJ Mol Plant Microbe Interact; 1990; 3(3):174-81. PubMed ID: 2134335 [TBL] [Abstract][Full Text] [Related]
5. Signal transduction in the Rhizobium meliloti dicarboxylic acid transport system. Giblin L; Boesten B; Turk S; Hooykaas P; O'Gara F FEMS Microbiol Lett; 1995 Feb; 126(1):25-30. PubMed ID: 7896073 [TBL] [Abstract][Full Text] [Related]
6. Purification and characterization of the AAA+ domain of Sinorhizobium meliloti DctD, a sigma54-dependent transcriptional activator. Xu H; Gu B; Nixon BT; Hoover TR J Bacteriol; 2004 Jun; 186(11):3499-507. PubMed ID: 15150237 [TBL] [Abstract][Full Text] [Related]
7. A rhizobial homolog of IHF stimulates transcription of dctA in Rhizobium leguminosarum but not in Sinorhizobium meliloti. Sojda J; Gu B; Lee J; Hoover TR; Nixon BT Gene; 1999 Oct; 238(2):489-500. PubMed ID: 10570977 [TBL] [Abstract][Full Text] [Related]
8. Protein crosslinking studies suggest that Rhizobium meliloti C4-dicarboxylic acid transport protein D, a sigma 54-dependent transcriptional activator, interacts with sigma 54 and the beta subunit of RNA polymerase. Lee JH; Hoover TR Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9702-6. PubMed ID: 7568201 [TBL] [Abstract][Full Text] [Related]
9. Cooperative binding of DctD to the dctA upstream activation sequence of Rhizobium meliloti is enhanced in a constitutively active truncated mutant. Scholl D; Nixon BT J Biol Chem; 1996 Oct; 271(42):26435-42. PubMed ID: 8824302 [TBL] [Abstract][Full Text] [Related]
10. The Escherichia coli cAMP receptor protein (CRP) represses the Rhizobium meliloti dctA promoter in a cAMP-dependent fashion. Wang YP; Giblin L; Boesten B; O'Gara F Mol Microbiol; 1993 Apr; 8(2):253-9. PubMed ID: 8391103 [TBL] [Abstract][Full Text] [Related]
11. Rhizobium meliloti and Rhizobium leguminosarum dctD gene products bind to tandem sites in an activation sequence located upstream of sigma 54-dependent dctA promoters. Ledebur H; Gu B; Sojda J; Nixon BT J Bacteriol; 1990 Jul; 172(7):3888-97. PubMed ID: 2193923 [TBL] [Abstract][Full Text] [Related]
12. NtrBC-dependent expression from the Rhizobium meliloti dctA promoter in Escherichia coli. Allaway D; Boesten B; O'Gara F FEMS Microbiol Lett; 1995 May; 128(3):241-5. PubMed ID: 7781970 [TBL] [Abstract][Full Text] [Related]
13. Constitutive ATP hydrolysis and transcription activation by a stable, truncated form of Rhizobium meliloti DCTD, a sigma 54-dependent transcriptional activator. Lee JH; Scholl D; Nixon BT; Hoover TR J Biol Chem; 1994 Aug; 269(32):20401-9. PubMed ID: 8051135 [TBL] [Abstract][Full Text] [Related]
14. The central domain of Rhizobium meliloti NifA is sufficient to activate transcription from the R. meliloti nifH promoter. Huala E; Ausubel FM J Bacteriol; 1989 Jun; 171(6):3354-65. PubMed ID: 2722751 [TBL] [Abstract][Full Text] [Related]
15. Alterations within the activation domain of the sigma 54-dependent activator DctD that prevent transcriptional activation. Wang YK; Hoover TR J Bacteriol; 1997 Sep; 179(18):5812-9. PubMed ID: 9294439 [TBL] [Abstract][Full Text] [Related]
16. Novel substitutions in the sigma54-dependent activator DctD that increase dependence on upstream activation sequences or uncouple ATP hydrolysis from transcriptional activation. Xu H; Kelly MT; Nixon BT; Hoover TR Mol Microbiol; 2004 Oct; 54(1):32-44. PubMed ID: 15458403 [TBL] [Abstract][Full Text] [Related]
17. The central domain of Rhizobium leguminosarum DctD functions independently to activate transcription. Huala E; Stigter J; Ausubel FM J Bacteriol; 1992 Feb; 174(4):1428-31. PubMed ID: 1735730 [TBL] [Abstract][Full Text] [Related]
18. Negative regulation of AAA + ATPase assembly by two component receiver domains: a transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria. Doucleff M; Chen B; Maris AE; Wemmer DE; Kondrashkina E; Nixon BT J Mol Biol; 2005 Oct; 353(2):242-55. PubMed ID: 16169010 [TBL] [Abstract][Full Text] [Related]
19. Symbiotic nitrogen fixation by a nifA deletion mutant of Rhizobium meliloti: the role of an unusual ntrC allele. Labes M; Rastogi V; Watson R; Finan TM J Bacteriol; 1993 May; 175(9):2662-73. PubMed ID: 8478331 [TBL] [Abstract][Full Text] [Related]
20. Relationships between C4 dicarboxylic acid transport and chemotaxis in Rhizobium meliloti. Robinson JB; Bauer WD J Bacteriol; 1993 Apr; 175(8):2284-91. PubMed ID: 8468289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]