These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 7985577)
1. Short versus long echo time for cranial MR angiography in children and adults. Smith AS; Haacke EM; Lin W; Berman B; Wiznitzer M AJNR Am J Neuroradiol; 1994 Sep; 15(8):1557-64. PubMed ID: 7985577 [TBL] [Abstract][Full Text] [Related]
2. High resolution, magnetization transfer saturation, variable flip angle, time-of-flight MRA in the detection of intracranial vascular stenoses. Dagirmanjian A; Ross JS; Obuchowski N; Lewin JS; Tkach JA; Ruggieri PM; Masaryk TJ J Comput Assist Tomogr; 1995; 19(5):700-6. PubMed ID: 7560313 [TBL] [Abstract][Full Text] [Related]
3. Contrast-enhanced MR angiography for the diagnosis of intracranial vascular disease: optimal dose of gadopentetate dimeglumine. Jung HW; Chang KH; Choi DS; Han MH; Han MC AJR Am J Roentgenol; 1995 Nov; 165(5):1251-5. PubMed ID: 7572513 [TBL] [Abstract][Full Text] [Related]
4. Image quality improvement in three-dimensional time-of-flight magnetic resonance angiography using the subtraction method for brain and temporal bone diseases. Peng SH; Shen CY; Wu MC; Lin YD; Huang CH; Kang RJ; Tyan YS; Tsao TF J Chin Med Assoc; 2013 Aug; 76(8):458-65. PubMed ID: 23769881 [TBL] [Abstract][Full Text] [Related]
5. Effects of Imaging Parameters on the Quality of Contrast-Enhanced MR Angiography of Cerebral Aneurysms Treated Using Stent-Assisted Coiling: A Phantom Study. Ikushima Y; Hashido T; Watanabe Y; Doi T Magn Reson Med Sci; 2017 Apr; 16(2):146-151. PubMed ID: 27599584 [TBL] [Abstract][Full Text] [Related]
7. Intracranial MR angiography: application of magnetization transfer contrast and fat saturation to short gradient-echo, velocity-compensated sequences. Lin W; Tkach JA; Haacke EM; Masaryk TJ Radiology; 1993 Mar; 186(3):753-61. PubMed ID: 8430184 [TBL] [Abstract][Full Text] [Related]
8. Head and neck MR angiography in pediatric patients: a pictorial essay. Allison JW; Glasier CM; Stark JE; James CA; Angtuaco EJ Radiographics; 1994 Jul; 14(4):795-805. PubMed ID: 7938769 [TBL] [Abstract][Full Text] [Related]
9. Whole-brain intracranial vessel wall imaging at 3 Tesla using cerebrospinal fluid-attenuated T1-weighted 3D turbo spin echo. Fan Z; Yang Q; Deng Z; Li Y; Bi X; Song S; Li D Magn Reson Med; 2017 Mar; 77(3):1142-1150. PubMed ID: 26923198 [TBL] [Abstract][Full Text] [Related]
10. MR imaging of the brain: comparison of gradient-echo and spin-echo pulse sequences. Pui MH; Fok EC AJR Am J Roentgenol; 1995 Oct; 165(4):959-62. PubMed ID: 7677001 [TBL] [Abstract][Full Text] [Related]
11. Breath-hold 3D MR angiography of the renal vasculature using a contrast-enhanced multiecho gradient-echo technique. Papachristopoulos G; Bis KG; Shetty AN; Ross M; Bagga H; Shirkhoda A; Laub G Invest Radiol; 1999 Dec; 34(12):731-8. PubMed ID: 10587868 [TBL] [Abstract][Full Text] [Related]
12. Supraaortic arteries: contrast-enhanced MR angiography at 3.0 T--highly accelerated parallel acquisition for improved spatial resolution over an extended field of view. Nael K; Villablanca JP; Pope WB; McNamara TO; Laub G; Finn JP Radiology; 2007 Feb; 242(2):600-9. PubMed ID: 17255428 [TBL] [Abstract][Full Text] [Related]
13. Two-dimensional thick-slice MR digital subtraction angiography for assessment of cerebrovascular occlusive diseases. Aoki S; Yoshikawa T; Hori M; Ishigame K; Nambu A; Kumagai H; Araki T Eur Radiol; 2000; 10(12):1858-64. PubMed ID: 11305560 [TBL] [Abstract][Full Text] [Related]
14. MR angiography of the head and neck: value of two-dimensional phase-contrast projection technique. Applegate GR; Talagala SL; Applegate LJ AJR Am J Roentgenol; 1992 Aug; 159(2):369-74. PubMed ID: 1632359 [TBL] [Abstract][Full Text] [Related]
15. Multi-echo acquisition of MR angiography and venography of the brain at 3 Tesla. Du YP; Jin Z; Hu Y; Tanabe J J Magn Reson Imaging; 2009 Aug; 30(2):449-54. PubMed ID: 19629975 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous imaging of radiation-induced cerebral microbleeds, arteries and veins, using a multiple gradient echo sequence at 7 Tesla. Bian W; Banerjee S; Kelly DA; Hess CP; Larson PE; Chang SM; Nelson SJ; Lupo JM J Magn Reson Imaging; 2015 Aug; 42(2):269-79. PubMed ID: 25471321 [TBL] [Abstract][Full Text] [Related]
17. [Magnetic resonance angiography of the carotid artery: effect of short and ultra-short echo times]. Müller MF; Wielopolski P; Teich-Siewert B; Edelman RR Rofo; 1996 Apr; 164(4):308-13. PubMed ID: 8645864 [TBL] [Abstract][Full Text] [Related]
18. [The evaluation of 3DFT time-of-flight MR-angiography versus angiography in the study of carotid atheromatous lesions with a review of the literature]. Auffray-Calvier E; Desal HA; Viarouge MP; Havet T; De Kersaint-Gilly A J Neuroradiol; 1995 Dec; 22(4):272-87. PubMed ID: 8636803 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional time-of-flight MR angiography with variable TE (VARIETE) for fat signal reduction. Lin W; Haacke EM; Tkach JA Magn Reson Med; 1994 Nov; 32(5):678-83. PubMed ID: 7808272 [TBL] [Abstract][Full Text] [Related]
20. Assessment of blood supply to intracranial pathologies in children using MR digital subtraction angiography. Chooi WK; Connolly DJ; Coley SC; Griffiths PD Pediatr Radiol; 2006 Oct; 36(10):1057-62. PubMed ID: 16915371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]