BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 7986028)

  • 1. Role of Na+ in transport of Hg2+ and induction of the Tn21 mer operon.
    Selifonova OV; Barkay T
    Appl Environ Microbiol; 1994 Oct; 60(10):3503-7. PubMed ID: 7986028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment.
    Selifonova O; Burlage R; Barkay T
    Appl Environ Microbiol; 1993 Sep; 59(9):3083-90. PubMed ID: 8215378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the merT and merP gene products of transposon Tn501 in the induction and expression of resistance to mercuric ions.
    Lund PA; Brown NL
    Gene; 1987; 52(2-3):207-14. PubMed ID: 3038684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pH on intracellular accumulation of trace concentrations of Hg(II) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter.
    Golding GR; Sparling R; Kelly CA
    Appl Environ Microbiol; 2008 Feb; 74(3):667-75. PubMed ID: 18083863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of a novel organometallic receptor protein regulating the expression of the broad spectrum mercury-resistant operon of plasmid pDU1358.
    Yu H; Mukhopadhyay D; Misra TK
    J Biol Chem; 1994 Jun; 269(22):15697-702. PubMed ID: 8195221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive synthesis of a transport function encoded by the Thiobacillus ferrooxidans merC gene cloned in Escherichia coli.
    Kusano T; Ji GY; Inoue C; Silver S
    J Bacteriol; 1990 May; 172(5):2688-92. PubMed ID: 2185229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyphosphate produced in recombinant Escherichia coli confers mercury resistance.
    Pan-Hou H; Kiyono M; Omura H; Omura T; Endo G
    FEMS Microbiol Lett; 2002 Feb; 207(2):159-64. PubMed ID: 11958934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular inducer Hg2+ concentration is rate determining for the expression of the mercury-resistance operon in cells.
    Yu H; Chu L; Misra TK
    J Bacteriol; 1996 May; 178(9):2712-4. PubMed ID: 8626343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tn5 insertion mutations in the mercuric ion resistance genes derived from plasmid R100.
    Ni'Bhriain NN; Silver S; Foster TJ
    J Bacteriol; 1983 Aug; 155(2):690-703. PubMed ID: 6307976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mercury resistance operon of the IncJ plasmid pMERPH exhibits structural and regulatory divergence from other Gram-negative mer operons.
    Osborn AM; Bruce KD; Ritchie DA; Strike P
    Microbiology (Reading); 1996 Feb; 142 ( Pt 2)():337-345. PubMed ID: 8932707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of Escherichia coli HB101 and Pseudomonas putida PpY101 harboring a recombinant plasmid with tandem insertion of the mercury resistance operon.
    Kurabayashi T; Iwasaki K; Uchiyama H; Nakamura K; Tanaka H; Yagi O
    Biosci Biotechnol Biochem; 1997 Jul; 61(7):1187-9. PubMed ID: 9255983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mer-lux transcriptional fusion for real-time examination of in vivo gene expression kinetics and promoter response to altered superhelicity.
    Condee CW; Summers AO
    J Bacteriol; 1992 Dec; 174(24):8094-101. PubMed ID: 1334070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and functional characterization of MerD. A coregulator of the mercury resistance operon in gram-negative bacteria.
    Mukhopadhyay D; Yu HR; Nucifora G; Misra TK
    J Biol Chem; 1991 Oct; 266(28):18538-42. PubMed ID: 1917975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide sequence within Tn3926 confirms this as a Tn21-like transposable element and provides evidence for the origin of the mer operon carried by plasmid pKLH2.
    Osbourn SE; Turner AK; Grinsted J
    Plasmid; 1995 Jan; 33(1):65-9. PubMed ID: 7753910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypersensitivity to Hg2+ and hyperbinding activity associated with cloned fragments of the mercurial resistance operon of plasmid NR1.
    Nakahara H; Silver S; Miki T; Rownd RH
    J Bacteriol; 1979 Oct; 140(1):161-6. PubMed ID: 387720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mercuric ion uptake role for the integral inner membrane protein, MerC, involved in bacterial mercuric ion resistance.
    Sahlman L; Wong W; Powlowski J
    J Biol Chem; 1997 Nov; 272(47):29518-26. PubMed ID: 9368013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury operon regulation by the merR gene of the organomercurial resistance system of plasmid pDU1358.
    Nucifora G; Chu L; Silver S; Misra TK
    J Bacteriol; 1989 Aug; 171(8):4241-7. PubMed ID: 2666393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of gene amplification on mercuric ion reduction activity of Escherichia coli.
    Philippidis GP; Malmberg LH; Hu WS; Schottel JL
    Appl Environ Microbiol; 1991 Dec; 57(12):3558-64. PubMed ID: 1785930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of a single membrane component from the Bacillus mer operon enhanced mercury resistance in an Escherichia coli host.
    Hsieh JL; Chen CY; Chang JS; Endo G; Huang CC
    Biosci Biotechnol Biochem; 2007 Jun; 71(6):1494-9. PubMed ID: 17587680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletions in the r-determinant mer region of plasmid R100-1 selected for loss of mercury hypersensitivy.
    Foster TJ; Nakahara H
    J Bacteriol; 1979 Oct; 140(1):301-5. PubMed ID: 387727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.