These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 7986064)
1. Involvement of preexisting lipid hydroperoxides in Cu(2+)-stimulated oxidation of low-density lipoprotein. Thomas JP; Kalyanaraman B; Girotti AW Arch Biochem Biophys; 1994 Dec; 315(2):244-54. PubMed ID: 7986064 [TBL] [Abstract][Full Text] [Related]
2. A critical overview of the chemistry of copper-dependent low density lipoprotein oxidation: roles of lipid hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Burkitt MJ Arch Biochem Biophys; 2001 Oct; 394(1):117-35. PubMed ID: 11566034 [TBL] [Abstract][Full Text] [Related]
3. Lipid hydroperoxide involvement in copper-dependent and independent oxidation of low density lipoproteins. Thomas CE; Jackson RL J Pharmacol Exp Ther; 1991 Mar; 256(3):1182-8. PubMed ID: 2005580 [TBL] [Abstract][Full Text] [Related]
4. A method for defining the stages of low-density lipoprotein oxidation by the separation of cholesterol- and cholesteryl ester-oxidation products using HPLC. Kritharides L; Jessup W; Gifford J; Dean RT Anal Biochem; 1993 Aug; 213(1):79-89. PubMed ID: 8238886 [TBL] [Abstract][Full Text] [Related]
5. Role of alpha-tocopheroxyl radical in the initiation of lipid peroxidation in human low-density lipoprotein exposed to horse radish peroxidase. Witting PK; Upston JM; Stocker R Biochemistry; 1997 Feb; 36(6):1251-8. PubMed ID: 9063873 [TBL] [Abstract][Full Text] [Related]
6. Apolipoprotein B carbonyl formation is enhanced by lipid peroxidation during copper-mediated oxidation of human low-density lipoproteins. Yan LJ; Lodge JK; Traber MG; Packer L Arch Biochem Biophys; 1997 Mar; 339(1):165-71. PubMed ID: 9056246 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous transfer of phospholipid and cholesterol hydroperoxides between cell membranes and low-density lipoprotein: assessment of reaction kinetics and prooxidant effects. Vila A; Korytowski W; Girotti AW Biochemistry; 2002 Nov; 41(46):13705-16. PubMed ID: 12427033 [TBL] [Abstract][Full Text] [Related]
8. Oxidation and antioxidation of human low-density lipoprotein and plasma exposed to 3-morpholinosydnonimine and reagent peroxynitrite. Thomas SR; Davies MJ; Stocker R Chem Res Toxicol; 1998 May; 11(5):484-94. PubMed ID: 9585479 [TBL] [Abstract][Full Text] [Related]
9. Cu(I) availability paradoxically antagonizes antioxidant consumption and lipid peroxidation during the initiation phase of copper-induced LDL oxidation. Bagnati M; Bordone R; Perugini C; Cau C; Albano E; Bellomo G Biochem Biophys Res Commun; 1998 Dec; 253(2):235-40. PubMed ID: 9878521 [TBL] [Abstract][Full Text] [Related]
10. Content of antioxidants, preformed lipid hydroperoxides, and cholesterol as predictors of the susceptibility of human LDL to metal ion-dependent and -independent oxidation. Frei B; Gaziano JM J Lipid Res; 1993 Dec; 34(12):2135-45. PubMed ID: 8301232 [TBL] [Abstract][Full Text] [Related]
11. When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid. Bagnati M; Perugini C; Cau C; Bordone R; Albano E; Bellomo G Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):143-52. PubMed ID: 10229669 [TBL] [Abstract][Full Text] [Related]
13. Enzymatic reduction of phospholipid and cholesterol hydroperoxides in artificial bilayers and lipoproteins. Thomas JP; Geiger PG; Maiorino M; Ursini F; Girotti AW Biochim Biophys Acta; 1990 Aug; 1045(3):252-60. PubMed ID: 2386798 [TBL] [Abstract][Full Text] [Related]
14. Reduction of Cu(II) by lipid hydroperoxides: implications for the copper-dependent oxidation of low-density lipoprotein. Patel RP; Svistunenko D; Wilson MT; Darley-Usmar VM Biochem J; 1997 Mar; 322 ( Pt 2)(Pt 2):425-33. PubMed ID: 9065759 [TBL] [Abstract][Full Text] [Related]
15. Direct measurement by single photon counting of lipid hydroperoxides in human plasma and lipoproteins. Zamburlini A; Maiorino M; Barbera P; Roveri A; Ursini F Anal Biochem; 1995 Nov; 232(1):107-13. PubMed ID: 8600817 [TBL] [Abstract][Full Text] [Related]
16. Paradoxical protective effect of aminoguanidine toward low-density lipoprotein oxidation: inhibition of apolipoprotein B fragmentation without preventing its carbonylation. Mechanism of action of aminoguanidine. Jedidi I; Thérond P; Zarev S; Cosson C; Couturier M; Massot C; Jore D; Gardès-Albert M; Legrand A; Bonnefont-Rousselot D Biochemistry; 2003 Sep; 42(38):11356-65. PubMed ID: 14503886 [TBL] [Abstract][Full Text] [Related]
17. Aluminum ions stimulate the oxidizability of low density lipoprotein by Fe2+: implication in hemodialysis mediated atherogenic LDL modification. Kapiotis S; Hermann M; Exner M; Sturm BN; Scheiber-Mojdehkar B; Goldenberg H; Kopp S; Chiba P; Gmeiner BM Free Radic Res; 2005 Nov; 39(11):1225-31. PubMed ID: 16298749 [TBL] [Abstract][Full Text] [Related]
18. The mechanism of apolipoprotein B-100 thiol depletion during oxidative modification of low-density lipoprotein. Ferguson E; Singh RJ; Hogg N; Kalyanaraman B Arch Biochem Biophys; 1997 May; 341(2):287-94. PubMed ID: 9169017 [TBL] [Abstract][Full Text] [Related]
19. Acute and long-term effects of low-density lipoprotein (LDL)-apheresis on oxidative damage to LDL and reducing capacity of erythrocytes in patients with severe familial hypercholesterolaemia. Stefanutti C; Di Giacomo S; Vivenzio A; Isacchi GC; Masella R; Caprari P; Varì R; Tarzia A; Mosiello A; Cantafora A Clin Sci (Lond); 2001 Feb; 100(2):191-8. PubMed ID: 11171288 [TBL] [Abstract][Full Text] [Related]
20. Reduction of HDL- and LDL-associated cholesterylester and phospholipid hydroperoxides by phospholipid hydroperoxide glutathione peroxidase and Ebselen (PZ 51). Sattler W; Maiorino M; Stocker R Arch Biochem Biophys; 1994 Mar; 309(2):214-21. PubMed ID: 8135530 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]