BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 7986072)

  • 1. Glucose-induced phosphorylation of the MDH2 isozyme of malate dehydrogenase in Saccharomyces cerevisiae.
    Minard KI; McAlister-Henn L
    Arch Biochem Biophys; 1994 Dec; 315(2):302-9. PubMed ID: 7986072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-induced degradation of the MDH2 isozyme of malate dehydrogenase in yeast.
    Minard KI; McAlister-Henn L
    J Biol Chem; 1992 Aug; 267(24):17458-64. PubMed ID: 1324938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and function of a mislocalized form of peroxisomal malate dehydrogenase (MDH3) in yeast.
    McAlister-Henn L; Steffan JS; Minard KI; Anderson SL
    J Biol Chem; 1995 Sep; 270(36):21220-5. PubMed ID: 7673155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical and genetic interactions of cytosolic malate dehydrogenase with other gluconeogenic enzymes.
    Gibson N; McAlister-Henn L
    J Biol Chem; 2003 Jul; 278(28):25628-36. PubMed ID: 12730240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events.
    Hung GC; Brown CR; Wolfe AB; Liu J; Chiang HL
    J Biol Chem; 2004 Nov; 279(47):49138-50. PubMed ID: 15358789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae.
    Hämmerle M; Bauer J; Rose M; Szallies A; Thumm M; Düsterhus S; Mecke D; Entian KD; Wolf DH
    J Biol Chem; 1998 Sep; 273(39):25000-5. PubMed ID: 9737955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cat8 and Sip4 mediate regulated transcriptional activation of the yeast malate dehydrogenase gene MDH2 by three carbon source-responsive promoter elements.
    Roth S; Schüller HJ
    Yeast; 2001 Jan; 18(2):151-62. PubMed ID: 11169757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, nucleotide sequence analysis, and disruption of the MDH2 gene from Saccharomyces cerevisiae: evidence for three isozymes of yeast malate dehydrogenase.
    Minard KI; McAlister-Henn L
    Mol Cell Biol; 1991 Jan; 11(1):370-80. PubMed ID: 1986231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of the yeast gene encoding the MDH3 isozyme of malate dehydrogenase.
    Steffan JS; McAlister-Henn L
    J Biol Chem; 1992 Dec; 267(34):24708-15. PubMed ID: 1447211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic effects of altering redundant targeting signals for yeast mitochondrial malate dehydrogenase.
    Small WC; McAlister-Henn L
    Arch Biochem Biophys; 1997 Aug; 344(1):53-60. PubMed ID: 9244381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of a yeast malate dehydrogenase 2 (Mdh2) antibody tested for use in western blots.
    Gabay-Maskit S; Schuldiner M; Zalckvar E
    F1000Res; 2018; 7():130. PubMed ID: 29568493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of mutations of GID protein-coding genes on malate production and enzyme expression profiles in Saccharomyces cerevisiae.
    Negoro H; Matsumura K; Matsuda F; Shimizu H; Hata Y; Ishida H
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4971-4983. PubMed ID: 32248437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae.
    Pines O; Shemesh S; Battat E; Goldberg I
    Appl Microbiol Biotechnol; 1997 Aug; 48(2):248-55. PubMed ID: 9299784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo and in vitro studies on the glucose dependent inactivation of yeast cytoplasmic malate dehydrogenase.
    Neeff J; Mecke D
    Arch Microbiol; 1977 Oct; 115(1):55-60. PubMed ID: 337921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccharomyces cerevisiae Yak1p protein kinase autophosphorylates on tyrosine residues and phosphorylates myelin basic protein on a C-terminal serine residue.
    Kassis S; Melhuish T; Annan RS; Chen SL; Lee JC; Livi GP; Creasy CL
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):263-72. PubMed ID: 10816418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular analysis of cytosolic and mitochondrial malate dehydrogenases isolated from domestic cats (Felis catus).
    Sasaki N; Nakamura M; Soeta S
    Genet Mol Res; 2014 Aug; 13(3):6855-64. PubMed ID: 25177965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and functional effects of mutations altering the subunit interface of mitochondrial malate dehydrogenase.
    Steffan JS; McAlister-Henn L
    Arch Biochem Biophys; 1991 Jun; 287(2):276-82. PubMed ID: 1898005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of enzymes and isoenzymes of carbohydrate metabolism in the yeast Saccharomyces cerevisiae.
    Entian KD; Fröhlich KU; Mecke D
    Biochim Biophys Acta; 1984 Jun; 799(2):181-6. PubMed ID: 6329315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The malate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, characterisation and studies on their regulation.
    Hägele E; Neeff J; Mecke D
    Eur J Biochem; 1978 Feb; 83(1):67-76. PubMed ID: 342240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dispensable presequence for cellular localization and function of mitochondrial malate dehydrogenase from Saccharomyces cerevisiae.
    Thompson LM; McAlister-Henn L
    J Biol Chem; 1989 Jul; 264(20):12091-6. PubMed ID: 2663847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.