BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 7986084)

  • 1. The electron transfer reactions of NADPH: cytochrome P450 reductase with nonphysiological oxidants.
    Cénas N; Anusevicius Z; Bironaité D; Bachmanova GI; Archakov AI; Ollinger K
    Arch Biochem Biophys; 1994 Dec; 315(2):400-6. PubMed ID: 7986084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox conversions of methemoglobin during redox cycling of quinones and aromatic nitrocompounds.
    Cénas N; Ollinger K
    Arch Biochem Biophys; 1994 Nov; 315(1):170-6. PubMed ID: 7979395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of a 5'-deazaFAD T491V NADPH-cytochrome P450 reductase.
    Zhang H; Gruenke L; Saribas AS; Im SC; Shen AL; Kasper CB; Waskell L
    Biochemistry; 2003 Jun; 42(22):6804-13. PubMed ID: 12779335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase.
    Knight K; Scrutton NS
    Biochem J; 2002 Oct; 367(Pt 1):19-30. PubMed ID: 12079493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase.
    Yamamoto K; Kimura S; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2005 Aug; 440(1):65-78. PubMed ID: 16009330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3.
    Sevrioukova I; Shaffer C; Ballou DP; Peterson JA
    Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of cytochrome b5 by NADPH-cytochrome P450 reductase.
    Guengerich FP
    Arch Biochem Biophys; 2005 Aug; 440(2):204-11. PubMed ID: 16055078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Stimulation of the NADPH:adrenodoxin reductase diaphorase reaction by adrenodoxin].
    Martsinkiavichene IA; Chenas NK; Kulis IuIu; Usanov SA
    Biokhimiia; 1990 Sep; 55(9):1624-31. PubMed ID: 2078639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW; Church DF; Cueto R; Pryor WA
    Arch Biochem Biophys; 1993 Aug; 304(2):371-8. PubMed ID: 8394056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitation of FAD-dependent cytochrome P450 reductase activity by photoreduction.
    Hodgson AV; Strobel HW
    Anal Biochem; 1996 Dec; 243(1):154-7. PubMed ID: 8954538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase.
    Grunau A; Paine MJ; Ladbury JE; Gutierrez A
    Biochemistry; 2006 Feb; 45(5):1421-34. PubMed ID: 16445284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the Insertion of a Glycine Residue into the Loop Spanning Residues 536-541 on the Semiquinone State and Redox Properties of the Flavin Mononucleotide-Binding Domain of Flavocytochrome P450BM-3 from Bacillus megaterium.
    Chen HC; Swenson RP
    Biochemistry; 2008 Dec; 47(52):13788-99. PubMed ID: 19055322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron transfer in human methionine synthase reductase studied by stopped-flow spectrophotometry.
    Wolthers KR; Scrutton NS
    Biochemistry; 2004 Jan; 43(2):490-500. PubMed ID: 14717604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A second FMN binding site in yeast NADPH-cytochrome P450 reductase suggests a mechanism of electron transfer by diflavin reductases.
    Lamb DC; Kim Y; Yermalitskaya LV; Yermalitsky VN; Lepesheva GI; Kelly SL; Waterman MR; Podust LM
    Structure; 2006 Jan; 14(1):51-61. PubMed ID: 16407065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the rate limiting step for electron transfer from NADPH:cytochrome P450 reductase to cytochrome b5: a laser flash-photolysis study.
    Bhattacharyya AK; Hurley JK; Tollin G; Waskell L
    Arch Biochem Biophys; 1994 May; 310(2):318-24. PubMed ID: 8179314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA.
    McLean KJ; Scrutton NS; Munro AW
    Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An appraisal of multiple NADPH binding-site models proposed for cytochrome P450 reductase, NO synthase, and related diflavin reductase systems.
    Daff S
    Biochemistry; 2004 Apr; 43(13):3929-32. PubMed ID: 15049700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression, purification, and physical properties of recombinant flavocytochrome fusion proteins containing rat cytochrome b(5) linked to NADPH-cytochrome P450 reductase by different membrane-binding segments.
    Gilep AA; Guryev OL; Usanov SA; Estabrook RW
    Arch Biochem Biophys; 2001 Jun; 390(2):222-34. PubMed ID: 11396925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.