These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 7986345)
1. Conformational stability of alpha-lactalbumin missing a peptide bond between Asp66 and Pro67. Hamada S; Moriyama Y; Yamaguchi K; Takeda K J Protein Chem; 1994 May; 13(4):423-8. PubMed ID: 7986345 [TBL] [Abstract][Full Text] [Related]
2. Conformational changes of alpha-lactalbumin induced by the stepwise reduction of its disulfide bridges: the effect of the disulfide bridges on the structural stability of the protein in sodium dodecyl sulfate solution. Takeda K; Ogawa K; Ohara M; Hamada S; Moriyama Y J Protein Chem; 1995 Nov; 14(8):679-84. PubMed ID: 8747428 [TBL] [Abstract][Full Text] [Related]
3. Secondary structural changes of homologous proteins, lysozyme and α-lactalbumin, in thermal denaturation up to 130 °C and sodium dodecyl sulfate (SDS) effects on these changes: comparison of thermal stabilities of SDS-induced helical structures in these proteins. Moriyama Y; Kondo N; Takeda K Langmuir; 2012 Nov; 28(47):16268-73. PubMed ID: 23110666 [TBL] [Abstract][Full Text] [Related]
4. Secondary structural changes in the intact and the disulfide bridges cleaved beta-lactoglobulin A and B in solutions of urea, guanidine hydrochloride, and sodium dodecyl sulfate. Takeda K; Moriyama Y J Protein Chem; 1989 Aug; 8(4):487-94. PubMed ID: 2803514 [TBL] [Abstract][Full Text] [Related]
5. Secondary Structural Changes of Intact and Disulfide Bridges-Cleaved Human Serum Albumins in Thermal Denaturation up to 130°C - Additive Effects of Sodium Dodecyl Sulfate on the Changes. Moriyama Y; Takeda K J Oleo Sci; 2017 May; 66(5):521-529. PubMed ID: 28413192 [TBL] [Abstract][Full Text] [Related]
6. Secondary structural changes of non-reduced and reduced ribonuclease A in solutions of urea, guanidine hydrochloride and sodium dodecyl sulfate. Takeda K; Sasa K; Nagao M; Batra PP Biochim Biophys Acta; 1988 Dec; 957(3):340-4. PubMed ID: 3196714 [TBL] [Abstract][Full Text] [Related]
7. The structure of denatured alpha-lactalbumin elucidated by the technique of disulfide scrambling: fractionation of conformational isomers of alpha-lactalbumin. Chang JY; Li L J Biol Chem; 2001 Mar; 276(13):9705-12. PubMed ID: 11118458 [TBL] [Abstract][Full Text] [Related]
8. Conformational changes of alpha-lactalbumin and its fragment, Phe31-Ile59, induced by sodium dodecyl sulfate. Hamada S; Takeda K J Protein Chem; 1993 Aug; 12(4):477-82. PubMed ID: 8251068 [TBL] [Abstract][Full Text] [Related]
9. A stabilized molten globule protein. Chang J; Bulychev A; Li L FEBS Lett; 2000 Dec; 487(2):298-300. PubMed ID: 11150528 [TBL] [Abstract][Full Text] [Related]
10. Conformational aspects of the Cu2+ binding to alpha-lactalbumin. Characterization and stability of the Cu-bound state. Van Dael H; Tieghem E; Haezebrouck P; Van Cauwelaert F Biophys Chem; 1992 Apr; 42(3):235-42. PubMed ID: 1581520 [TBL] [Abstract][Full Text] [Related]
11. Stability of HAMLET--a kinetically trapped alpha-lactalbumin oleic acid complex. Fast J; Mossberg AK; Svanborg C; Linse S Protein Sci; 2005 Feb; 14(2):329-40. PubMed ID: 15659367 [TBL] [Abstract][Full Text] [Related]
12. Unfolding and refolding pathways of a major kinetic trap in the oxidative folding of alpha-lactalbumin. Salamanca S; Chang JY Biochemistry; 2005 Jan; 44(2):744-50. PubMed ID: 15641801 [TBL] [Abstract][Full Text] [Related]
13. Contribution of disulfide bonds to stability of the folding intermediate of alpha-lactalbumin. Ikeguchi M; Sugai S Int J Pept Protein Res; 1989 Apr; 33(4):289-97. PubMed ID: 2753599 [TBL] [Abstract][Full Text] [Related]
14. Secondary structural changes of large and small fragments of bovine serum albumin in thermal denaturation and in sodium dodecyl sulfate denaturation. Takeda K; Hamada S; Wada A J Protein Chem; 1993 Apr; 12(2):223-8. PubMed ID: 8489708 [TBL] [Abstract][Full Text] [Related]
15. Hierarchical unfolding of the alpha-lactalbumin molten globule: presence of a compact intermediate without a unique tertiary fold. Chakraborty S; Peng Z J Mol Biol; 2000 Apr; 298(1):1-6. PubMed ID: 10756101 [TBL] [Abstract][Full Text] [Related]
16. Mechanism of laminin chain assembly into a triple-stranded coiled-coil structure. Nomizu M; Utani A; Beck K; Otaka A; Roller PP; Yamada Y Biochemistry; 1996 Mar; 35(9):2885-93. PubMed ID: 8608125 [TBL] [Abstract][Full Text] [Related]
17. Cooperative folding of the isolated alpha-helical domain of hen egg-white lysozyme. Bai P; Peng Z J Mol Biol; 2001 Nov; 314(2):321-9. PubMed ID: 11718563 [TBL] [Abstract][Full Text] [Related]
18. Estimation of the free energy of stabilization of ribonuclease A, lysozyme, alpha-lactalbumin, and myoglobin. Ahmad F; Bigelow CC J Biol Chem; 1982 Nov; 257(21):12935-8. PubMed ID: 7130187 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the transient folding intermediates in lysozyme and alpha-lactalbumin. Kuwajima K; Hiraoka Y; Ikeguchi M; Sugai S Biochemistry; 1985 Feb; 24(4):874-81. PubMed ID: 3994996 [TBL] [Abstract][Full Text] [Related]
20. Contribution of the 6-120 disulfide bond of alpha-lactalbumin to the stabilities of its native and molten globule states. Ikeguchi M; Sugai S; Fujino M; Sugawara T; Kuwajima K Biochemistry; 1992 Dec; 31(50):12695-700. PubMed ID: 1472507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]