BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7986345)

  • 1. Conformational stability of alpha-lactalbumin missing a peptide bond between Asp66 and Pro67.
    Hamada S; Moriyama Y; Yamaguchi K; Takeda K
    J Protein Chem; 1994 May; 13(4):423-8. PubMed ID: 7986345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational changes of alpha-lactalbumin induced by the stepwise reduction of its disulfide bridges: the effect of the disulfide bridges on the structural stability of the protein in sodium dodecyl sulfate solution.
    Takeda K; Ogawa K; Ohara M; Hamada S; Moriyama Y
    J Protein Chem; 1995 Nov; 14(8):679-84. PubMed ID: 8747428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary structural changes of homologous proteins, lysozyme and α-lactalbumin, in thermal denaturation up to 130 °C and sodium dodecyl sulfate (SDS) effects on these changes: comparison of thermal stabilities of SDS-induced helical structures in these proteins.
    Moriyama Y; Kondo N; Takeda K
    Langmuir; 2012 Nov; 28(47):16268-73. PubMed ID: 23110666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secondary structural changes in the intact and the disulfide bridges cleaved beta-lactoglobulin A and B in solutions of urea, guanidine hydrochloride, and sodium dodecyl sulfate.
    Takeda K; Moriyama Y
    J Protein Chem; 1989 Aug; 8(4):487-94. PubMed ID: 2803514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary Structural Changes of Intact and Disulfide Bridges-Cleaved Human Serum Albumins in Thermal Denaturation up to 130°C - Additive Effects of Sodium Dodecyl Sulfate on the Changes.
    Moriyama Y; Takeda K
    J Oleo Sci; 2017 May; 66(5):521-529. PubMed ID: 28413192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Secondary structural changes of non-reduced and reduced ribonuclease A in solutions of urea, guanidine hydrochloride and sodium dodecyl sulfate.
    Takeda K; Sasa K; Nagao M; Batra PP
    Biochim Biophys Acta; 1988 Dec; 957(3):340-4. PubMed ID: 3196714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of denatured alpha-lactalbumin elucidated by the technique of disulfide scrambling: fractionation of conformational isomers of alpha-lactalbumin.
    Chang JY; Li L
    J Biol Chem; 2001 Mar; 276(13):9705-12. PubMed ID: 11118458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes of alpha-lactalbumin and its fragment, Phe31-Ile59, induced by sodium dodecyl sulfate.
    Hamada S; Takeda K
    J Protein Chem; 1993 Aug; 12(4):477-82. PubMed ID: 8251068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stabilized molten globule protein.
    Chang J; Bulychev A; Li L
    FEBS Lett; 2000 Dec; 487(2):298-300. PubMed ID: 11150528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational aspects of the Cu2+ binding to alpha-lactalbumin. Characterization and stability of the Cu-bound state.
    Van Dael H; Tieghem E; Haezebrouck P; Van Cauwelaert F
    Biophys Chem; 1992 Apr; 42(3):235-42. PubMed ID: 1581520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of HAMLET--a kinetically trapped alpha-lactalbumin oleic acid complex.
    Fast J; Mossberg AK; Svanborg C; Linse S
    Protein Sci; 2005 Feb; 14(2):329-40. PubMed ID: 15659367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unfolding and refolding pathways of a major kinetic trap in the oxidative folding of alpha-lactalbumin.
    Salamanca S; Chang JY
    Biochemistry; 2005 Jan; 44(2):744-50. PubMed ID: 15641801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of disulfide bonds to stability of the folding intermediate of alpha-lactalbumin.
    Ikeguchi M; Sugai S
    Int J Pept Protein Res; 1989 Apr; 33(4):289-97. PubMed ID: 2753599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary structural changes of large and small fragments of bovine serum albumin in thermal denaturation and in sodium dodecyl sulfate denaturation.
    Takeda K; Hamada S; Wada A
    J Protein Chem; 1993 Apr; 12(2):223-8. PubMed ID: 8489708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical unfolding of the alpha-lactalbumin molten globule: presence of a compact intermediate without a unique tertiary fold.
    Chakraborty S; Peng Z
    J Mol Biol; 2000 Apr; 298(1):1-6. PubMed ID: 10756101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of laminin chain assembly into a triple-stranded coiled-coil structure.
    Nomizu M; Utani A; Beck K; Otaka A; Roller PP; Yamada Y
    Biochemistry; 1996 Mar; 35(9):2885-93. PubMed ID: 8608125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative folding of the isolated alpha-helical domain of hen egg-white lysozyme.
    Bai P; Peng Z
    J Mol Biol; 2001 Nov; 314(2):321-9. PubMed ID: 11718563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of the free energy of stabilization of ribonuclease A, lysozyme, alpha-lactalbumin, and myoglobin.
    Ahmad F; Bigelow CC
    J Biol Chem; 1982 Nov; 257(21):12935-8. PubMed ID: 7130187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the transient folding intermediates in lysozyme and alpha-lactalbumin.
    Kuwajima K; Hiraoka Y; Ikeguchi M; Sugai S
    Biochemistry; 1985 Feb; 24(4):874-81. PubMed ID: 3994996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of the 6-120 disulfide bond of alpha-lactalbumin to the stabilities of its native and molten globule states.
    Ikeguchi M; Sugai S; Fujino M; Sugawara T; Kuwajima K
    Biochemistry; 1992 Dec; 31(50):12695-700. PubMed ID: 1472507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.