These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 7986949)

  • 1. Formation of a bone apatite-like layer on the surface of porous hydroxyapatite ceramics.
    Yubao L; Klein CP; Zhang X; de Groot K
    Biomaterials; 1994 Aug; 15(10):835-41. PubMed ID: 7986949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apatite formation on the surface of Ceravital-type glass-ceramic in the body.
    Ohtsuki C; Kushitani H; Kokubo T; Kotani S; Yamamuro T
    J Biomed Mater Res; 1991 Nov; 25(11):1363-70. PubMed ID: 1797808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface mechanics and histomorphometric analysis of hydroxyapatite-coated and porous glass-ceramic implants in canine bone.
    Nimb L; Jensen JS; Gotfredsen K
    J Biomed Mater Res; 1995 Dec; 29(12):1477-82. PubMed ID: 8600137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tensile strength of the interface between hydroxyapatite and bone.
    Hong L; Xu HC; de Groot K
    J Biomed Mater Res; 1992 Jan; 26(1):7-18. PubMed ID: 1315777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The interface between hydroxyapatite ceramic and newly formed bone in scanning electron microscopy].
    Brill W; Katthagen BD
    Z Orthop Ihre Grenzgeb; 1987; 125(2):183-7. PubMed ID: 3039750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy.
    Neo M; Nakamura T; Ohtsuki C; Kokubo T; Yamamuro T
    J Biomed Mater Res; 1993 Aug; 27(8):999-1006. PubMed ID: 8408128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of serum proteins on solution-induced surface transformations of bioactive ceramics.
    Radin S; Ducheyne P
    J Biomed Mater Res; 1996 Mar; 30(3):273-9. PubMed ID: 8698689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of glass-ceramic bone implant materials on the in vitro formation of hydroxyapatite.
    Blumenthal NC; Posner AS; Cosma V; Gross U
    J Biomed Mater Res; 1988 Nov; 22(11):1033-41. PubMed ID: 2853711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface reactions of calcium phosphate ceramics to various solutions.
    Hyakuna K; Yamamuro T; Kotoura Y; Oka M; Nakamura T; Kitsugi T; Kokubo T; Kushitani H
    J Biomed Mater Res; 1990 Apr; 24(4):471-88. PubMed ID: 2347873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of hydrated silica, titania, and alumina in inducing apatite on implants.
    Li P; Ohtsuki C; Kokubo T; Nakanishi K; Soga N; de Groot K
    J Biomed Mater Res; 1994 Jan; 28(1):7-15. PubMed ID: 8126031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new glass-ceramic for bone replacement: evaluation of its bonding to bone tissue.
    Nakamura T; Yamamuro T; Higashi S; Kokubo T; Itoo S
    J Biomed Mater Res; 1985; 19(6):685-98. PubMed ID: 3001094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in ceramic-bone interface between surface-active ceramics and resorbable ceramics: a study by scanning and transmission electron microscopy.
    Neo M; Kotani S; Fujita Y; Nakamura T; Yamamuro T; Bando Y; Ohtsuki C; Kokubo T
    J Biomed Mater Res; 1992 Feb; 26(2):255-67. PubMed ID: 1569117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms and structure of the bond between bone and hydroxyapatite ceramics.
    Bagambisa FB; Joos U; Schilli W
    J Biomed Mater Res; 1993 Aug; 27(8):1047-55. PubMed ID: 8408117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramic and bone.
    Neo M; Kotani S; Nakamura T; Yamamuro T; Ohtsuki C; Kokubo T; Bando Y
    J Biomed Mater Res; 1992 Nov; 26(11):1419-32. PubMed ID: 1447227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative study on osteoconduction of apatite-wollastonite containing glass ceramic granules, hydroxyapatite granules, and alumina granules.
    Ono K; Yamamuro T; Nakamura T; Kokubo T
    Biomaterials; 1990 May; 11(4):265-71. PubMed ID: 2383622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate.
    Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H
    Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interface of calcium-phosphate and glass-ceramic in bone, a structural analysis.
    Gross UM; Müller-Mai CM; Voigt C
    Biomaterials; 1990 Jul; 11():83-5. PubMed ID: 2397266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone.
    Joschek S; Nies B; Krotz R; Göferich A
    Biomaterials; 2000 Aug; 21(16):1645-58. PubMed ID: 10905406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism and strength of bonding between two bioactive ceramics in vivo.
    Fujita Y; Yamamuro T; Nakamura T; Kitsugi T; Kotani S; Ohtsuki C; Kokubo T
    J Biomed Mater Res; 1992 Oct; 26(10):1311-24. PubMed ID: 1331113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The material science of calcium phosphate ceramics.
    Osborn JF; Newesely H
    Biomaterials; 1980 Apr; 1(2):108-11. PubMed ID: 7470556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.