These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 7987263)
1. Chemical modification of lysyl residues of Rhodotorula gracilis D-amino acid oxidase. Gadda G; Beretta GL; Pilone MS Biochem Mol Biol Int; 1994 Aug; 33(5):947-55. PubMed ID: 7987263 [TBL] [Abstract][Full Text] [Related]
2. Investigating the role of active site residues of Rhodotorula gracilis D-amino acid oxidase on its substrate specificity. Boselli A; Piubelli L; Molla G; Pilone MS; Pollegioni L; Sacchi S Biochimie; 2007 Mar; 89(3):360-8. PubMed ID: 17145127 [TBL] [Abstract][Full Text] [Related]
3. Chemical modification of histidyl residues in D-amino acid oxidase from Rhodotorula gracilis. Ramón F; de la Mata I; Iannacone S; Pilar Castillón M; Acebal C J Biochem; 1995 Nov; 118(5):911-6. PubMed ID: 8749306 [TBL] [Abstract][Full Text] [Related]
4. Identification of a reactive cysteine in the flavin-binding domain of Rhodotorula gracilis D-amino acid oxidase. Pollegioni L; Campaner S; Raibekas AA; Pilone MS Arch Biochem Biophys; 1997 Jul; 343(1):1-5. PubMed ID: 9210639 [TBL] [Abstract][Full Text] [Related]
5. Chemical modification studies on alkaline phosphatase from pearl oyster (Pinctada fucata): a substrate reaction course analysis and involvement of essential arginine and lysine residues at the active site. Chen HT; Xie LP; Yu ZY; Xu GR; Zhang RQ Int J Biochem Cell Biol; 2005 Jul; 37(7):1446-57. PubMed ID: 15833276 [TBL] [Abstract][Full Text] [Related]
6. Reaction of phenylglyoxal with arginine groups in D-amino-acid oxidase from Rhodotorula gracilis. Gadda G; Negri A; Pilone MS J Biol Chem; 1994 Jul; 269(27):17809-14. PubMed ID: 7913089 [TBL] [Abstract][Full Text] [Related]
7. Reactivity of histidyl residues in D-amino acid oxidase from Rhodotorula gracilis. Gadda G; Beretta GL; Pilone MS FEBS Lett; 1995 Apr; 363(3):307-10. PubMed ID: 7737423 [TBL] [Abstract][Full Text] [Related]
8. Identification and role of ionizing functional groups at the active center of Rhodotorula gracilis D-amino acid oxidase. Pollegioni L; Harris CM; Molla G; Pilone MS; Ghisla S FEBS Lett; 2001 Nov; 507(3):323-6. PubMed ID: 11696364 [TBL] [Abstract][Full Text] [Related]
9. Low pKa lysine residues at the active site of sarcosine oxidase from Corynebacterium sp. U-96. Mukouyama EB; Oguchi M; Kodera Y; Maeda T; Suzuki H Biochem Biophys Res Commun; 2004 Jul; 320(3):846-51. PubMed ID: 15240125 [TBL] [Abstract][Full Text] [Related]
10. Evidence for an essential lysyl residue in phospholipase D from Streptomyces sp. by modification with diethyl pyrocarbonate and pyridoxal 5-phosphate. Secundo F; Carrea G; D'Arrigo P; Servi S Biochemistry; 1996 Jul; 35(30):9631-6. PubMed ID: 8703934 [TBL] [Abstract][Full Text] [Related]
11. Overexpression in Escherichia coli of a recombinant chimeric Rhodotorula gracilis d-amino acid oxidase. Molla G; Vegezzi C; Pilone MS; Pollegioni L Protein Expr Purif; 1998 Nov; 14(2):289-94. PubMed ID: 9790893 [TBL] [Abstract][Full Text] [Related]
12. Dissection of the structural determinants involved in formation of the dimeric form of D-amino acid oxidase from Rhodotorula gracilis: role of the size of the betaF5-betaF6 loop. Piubelli L; Molla G; Caldinelli L; Pilone MS; Pollegioni L Protein Eng; 2003 Dec; 16(12):1063-9. PubMed ID: 14983088 [TBL] [Abstract][Full Text] [Related]
13. Properties of Rhodotorula gracilis D-amino acid oxidase immobilized on magnetic beads through his-tag. Kuan I; Liao R; Hsieh H; Chen K; Yu C J Biosci Bioeng; 2008 Feb; 105(2):110-5. PubMed ID: 18343336 [TBL] [Abstract][Full Text] [Related]
14. On the mechanism of Rhodotorula gracilis D-amino acid oxidase: role of the active site serine 335. Boselli A; Piubelli L; Molla G; Sacchi S; Pilone MS; Ghisla S; Pollegioni L Biochim Biophys Acta; 2004 Oct; 1702(1):19-32. PubMed ID: 15450847 [TBL] [Abstract][Full Text] [Related]
15. Role of arginine 285 in the active site of Rhodotorula gracilis D-amino acid oxidase. A site-directed mutagenesis study. Molla G; Porrini D; Job V; Motteran L; Vegezzi C; Campaner S; Pilone MS; Pollegioni L J Biol Chem; 2000 Aug; 275(32):24715-21. PubMed ID: 10821840 [TBL] [Abstract][Full Text] [Related]
16. Purification of Rhodotorula gracilis D-amino acid oxidase. Pollegioni L; Pilone MS Protein Expr Purif; 1992 Apr; 3(2):165-7. PubMed ID: 1358302 [TBL] [Abstract][Full Text] [Related]
17. Tryptophan 243 affects interprotein contacts, cofactor binding and stability in D-amino acid oxidase from Rhodotorula gracilis. Caldinelli L; Molla G; Pilone MS; Pollegioni L FEBS J; 2006 Feb; 273(3):504-12. PubMed ID: 16420474 [TBL] [Abstract][Full Text] [Related]
18. Chemical mechanism of D-amino acid oxidase from Rhodotorula gracilis: pH dependence of kinetic parameters. Ramón F; Castillón M; De La Mata I; Acebal C Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):311-4. PubMed ID: 9461524 [TBL] [Abstract][Full Text] [Related]
19. Analyzing the D-amino acid content in biological samples by engineered enzymes. Frattini L; Rosini E; Pollegioni L; Pilone MS J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Nov; 879(29):3235-9. PubMed ID: 21419721 [TBL] [Abstract][Full Text] [Related]
20. 2,4,6-Trinitrobenzenesulphonic acid as a probe for lysine at the active site of dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Goyal A; Katiyar SS Biochem Mol Biol Int; 1995 Jul; 36(3):639-47. PubMed ID: 7549964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]