These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 7987479)
1. Dependence of the electroosmotic mobility on the applied electric field and its reproducibility in capillary electrophoresis. Bello MS; Capelli L; Righetti PG J Chromatogr A; 1994 Nov; 684(2):311-22. PubMed ID: 7987479 [TBL] [Abstract][Full Text] [Related]
2. Theoretical description of the influence of external radial fields on the electroosmotic flow in capillary electrophoresis. Poppe H; Cifuentes A; Kok WT Anal Chem; 1996 Mar; 68(5):888-93. PubMed ID: 21619185 [TBL] [Abstract][Full Text] [Related]
3. Quantitative theory of electroosmotic flow in fused-silica capillaries using an extended site-dissociation--site-binding model. Zhou MX; Foley JP Anal Chem; 2006 Mar; 78(6):1849-58. PubMed ID: 16536420 [TBL] [Abstract][Full Text] [Related]
4. Dependence of electroosmotic flow in capillary electrophoresis on Group I and II metal ions. Dickens JE; Gorse J; Everhart JA; Ryan M J Chromatogr B Biomed Appl; 1994 Jul; 657(2):401-7. PubMed ID: 7952105 [TBL] [Abstract][Full Text] [Related]
5. Suppression of electroosmotic flow and its application to determination of electrophoretic mobilities in a poly(vinylpyrrolidone)-coated capillary. Kaneta T; Ueda T; Hata K; Imasaka T J Chromatogr A; 2006 Feb; 1106(1-2):52-5. PubMed ID: 16443452 [TBL] [Abstract][Full Text] [Related]
6. Mobility-based selective on-line preconcentration of proteins in capillary electrophoresis by controlling electroosmotic flow. Wang Q; Yue B; Lee ML J Chromatogr A; 2004 Jan; 1025(1):139-46. PubMed ID: 14753681 [TBL] [Abstract][Full Text] [Related]
7. Electroosmosis of polymer solutions in fused silica capillaries. Bello MS; de Besi P; Rezzonico R; Righetti PG; Casiraghi E Electrophoresis; 1994 May; 15(5):623-6. PubMed ID: 7925239 [TBL] [Abstract][Full Text] [Related]
8. Electroosmotic flow control and monitoring with an applied radial voltage for capillary zone electrophoresis. Hayes MA; Ewing AG Anal Chem; 1992 Mar; 64(5):512-6. PubMed ID: 1575320 [TBL] [Abstract][Full Text] [Related]
9. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis. Foley JP; Blackney DM; Ennis EJ J Chromatogr A; 2017 Nov; 1523():80-89. PubMed ID: 28864108 [TBL] [Abstract][Full Text] [Related]
10. Effects of buffer pH on electroosmotic flow control by an applied radial voltage for capillary zone electrophoresis. Hayes MA; Kheterpal I; Ewing AG Anal Chem; 1993 Jan; 65(1):27-31. PubMed ID: 8420387 [TBL] [Abstract][Full Text] [Related]
12. Electroosmotic pumping in microchips with nonhomogeneous distribution of electrolytes. Chien RL; Bousse L Electrophoresis; 2002 Jun; 23(12):1862-9. PubMed ID: 12116129 [TBL] [Abstract][Full Text] [Related]
13. Effect of electroosmotic flow on selectivity, efficiency, and resolution in capillary zone electrophoresis expressed by the dimensionless reduced mobility. Kenndler E J Capillary Electrophor; 1996; 3(4):191-8. PubMed ID: 9384736 [TBL] [Abstract][Full Text] [Related]
14. Theoretical and empirical approaches to express the mobility of small ions in capillary electrophoresis. Jouyban A; Kenndler E Electrophoresis; 2006 Mar; 27(5-6):992-1005. PubMed ID: 16470782 [TBL] [Abstract][Full Text] [Related]
15. Deconvolution of electrokinetic and chromatographic contributions to solute migration in stereoselective ion-exchange capillary electrochromatography on monolithic silica capillary columns. Preinerstorfer B; Lämmerhofer M; Hoffmann CV; Lubda D; Lindner W J Sep Sci; 2008 Sep; 31(16-17):3065-78. PubMed ID: 18428190 [TBL] [Abstract][Full Text] [Related]
16. Chemical stability of polyacrylamide-coating on fused silica capillary. Nakatani M; Shibukawa A; Nakagawa T Electrophoresis; 1995 Aug; 16(8):1451-6. PubMed ID: 8529613 [TBL] [Abstract][Full Text] [Related]
17. A simple method for assessment and minimization of errors in determination of electrophoretic or electroosmotic mobilities and velocities associated with the axial electric field distortion. Nowak PM; Woźniakiewicz M; Kościelniak P Electrophoresis; 2015 Dec; 36(24):2994-3001. PubMed ID: 26383237 [TBL] [Abstract][Full Text] [Related]
18. Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel. Peng R; Li D J Colloid Interface Sci; 2015 Feb; 440():126-32. PubMed ID: 25460698 [TBL] [Abstract][Full Text] [Related]
19. Investigation of the electroosmotic flow effect on the efficiency of capillary electrophoresis. Andreev VP; Lisin EE Electrophoresis; 1992 Nov; 13(11):832-7. PubMed ID: 1483424 [TBL] [Abstract][Full Text] [Related]
20. Modeling of the impact of ionic strength on the electroosmotic flow in capillary electrophoresis with uniform and discontinuous buffer systems. Thormann W; Zhang CX; Caslavska J; Gebauer P; Mosher RA Anal Chem; 1998 Feb; 70(3):549-62. PubMed ID: 21644753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]