These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 7988292)
1. Counting, measuring, and mapping in FISH-labelled cells: sample size considerations and implications for automation. Carothers AD Cytometry; 1994 Aug; 16(4):298-304. PubMed ID: 7988292 [TBL] [Abstract][Full Text] [Related]
2. Automation of spot counting in interphase cytogenetics using brightfield microscopy. Vrolijk H; Sloos WC; van de Rijke FM; Mesker WE; Netten H; Young IT; Raap AK; Tanke HJ Cytometry; 1996 Jun; 24(2):158-66. PubMed ID: 8725665 [TBL] [Abstract][Full Text] [Related]
3. Prenatal diagnosis using interphase fluorescence in situ hybridization (FISH): 2-year multi-center retrospective study and review of the literature. Tepperberg J; Pettenati MJ; Rao PN; Lese CM; Rita D; Wyandt H; Gersen S; White B; Schoonmaker MM Prenat Diagn; 2001 Apr; 21(4):293-301. PubMed ID: 11288120 [TBL] [Abstract][Full Text] [Related]
4. Examination of trisomy 13, 18 and 21 foetal tissues at different gestational ages using FISH. Moore GE; Ruangvutilert P; Chatzimeletiou K; Bell G; Chen CK; Johnson P; Harper JC Eur J Hum Genet; 2000 Mar; 8(3):223-8. PubMed ID: 10780789 [TBL] [Abstract][Full Text] [Related]
5. Automated four-color interphase fluorescence in situ hybridization approach for the simultaneous detection of specific aneuploidies of diagnostic and prognostic significance in high hyperdiploid acute lymphoblastic leukemia. Blandin AT; Mühlematter D; Bougeon S; Gogniat C; Porter S; Beyer V; Parlier V; Beckmann JS; van Melle G; Jotterand M Cancer Genet Cytogenet; 2008 Oct; 186(2):69-77. PubMed ID: 18940469 [TBL] [Abstract][Full Text] [Related]
6. Prenatal exclusion of segmental trisomy in familial chromosome 21 pericentric inversion by fluorescence in situ hybridization. Tardy EP; Tóth A; Kosztolányi G Prenat Diagn; 1997 Sep; 17(9):871-3. PubMed ID: 9316133 [TBL] [Abstract][Full Text] [Related]
7. Simultaneous detection of multiple genetic aberrations in single cells by spectral fluorescence in situ hybridization. Slovak ML; Tcheurekdjian L; Zhang FF; Murata-Collins JL Cancer Res; 2001 Feb; 61(3):831-6. PubMed ID: 11221864 [TBL] [Abstract][Full Text] [Related]
8. Fluorescent in-situ hybridization--some of its applications in clinical cytogenetics. Gole LA; Bongso A Singapore Med J; 1997 Nov; 38(11):497-503. PubMed ID: 9550914 [TBL] [Abstract][Full Text] [Related]
9. Rapid prenatal diagnosis of Down syndrome using quantitative fluorescence in situ hybridization on interphase nuclei. Truong K; Gibaud A; Dupont JM; Guilly MN; Soussaline F; Dutrillaux B; Malfoy B Prenat Diagn; 2003 Feb; 23(2):146-51. PubMed ID: 12575023 [TBL] [Abstract][Full Text] [Related]
10. Resolution of trisomic mosaicism in prenatal diagnosis: estimated performance of a 50K SNP microarray. Cross J; Peters G; Wu Z; Brohede J; Hannan GN Prenat Diagn; 2007 Dec; 27(13):1197-204. PubMed ID: 17994637 [TBL] [Abstract][Full Text] [Related]
11. Automated biodosimetry using digital image analysis of fluorescence in situ hybridization specimens. Castleman KR; Schulze M; Wu Q Radiat Res; 1997 Nov; 148(5 Suppl):S71-5. PubMed ID: 9355859 [TBL] [Abstract][Full Text] [Related]
12. [Rapid prenatal diagnosis of chromosome aneuploidies in 60 uncultured amniotic fluid samples by fluorescence in situ hybridization]. Wang H; Li H; Wang H; Wang H; Xia Y; Wen J; Long Z; Dai H; Liang D; Xia J; Wu L Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2008 Oct; 25(5):538-41. PubMed ID: 18841567 [TBL] [Abstract][Full Text] [Related]
13. New molecular techniques for chromosome analysis. Pergament E Baillieres Best Pract Res Clin Obstet Gynaecol; 2000 Aug; 14(4):677-90. PubMed ID: 10985938 [TBL] [Abstract][Full Text] [Related]
14. Toward the validation of aneusomy detection by fluorescence in situ hybridization in bladder cancer: comparative analysis with cytology, cytogenetics, and clinical features predicts recurrence and defines clinical testing limitations. Zhang FF; Arber DA; Wilson TG; Kawachi MH; Slovak ML Clin Cancer Res; 1997 Dec; 3(12 Pt 1):2317-28. PubMed ID: 9815630 [TBL] [Abstract][Full Text] [Related]
15. Efficacy of current molecular cytogenetic protocols for the diagnosis of chromosome aberrations in tumor specimens. Lichter P; Fischer K; Joos S; Fink T; Baudis M; Potkul RK; Ohl S; Solinas-Toldo S; Weber R; Stilgenbauer S; Bentz M; Döhner H Cytokines Mol Ther; 1996 Sep; 2(3):163-9. PubMed ID: 9384700 [TBL] [Abstract][Full Text] [Related]
16. Sample preparation and in situ hybridization techniques for automated molecular cytogenetic analysis of white blood cells. van de Rijke FM; Vrolijk H; Sloos W; Tanke HJ; Raap AK Cytometry; 1996 Jun; 24(2):151-7. PubMed ID: 8725664 [TBL] [Abstract][Full Text] [Related]
18. [Clinical application of fluorescence in situ hybridization to prenatal diagnosis]. Kogame K Rinsho Byori; 1996 Feb; 44(2):141-6. PubMed ID: 8851197 [TBL] [Abstract][Full Text] [Related]
19. An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics. Iourov IY; Soloviev IV; Vorsanova SG; Monakhov VV; Yurov YB J Histochem Cytochem; 2005 Mar; 53(3):401-8. PubMed ID: 15750029 [TBL] [Abstract][Full Text] [Related]
20. Fluorescent in situ hybridization as an adjunct to conventional cytogenetics. Mark HF Ann Clin Lab Sci; 1994; 24(2):153-63. PubMed ID: 8203823 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]