BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7988496)

  • 1. Effects of the beige mutation on respiratory tract infection with Pseudomonas aeruginosa in mice.
    Tanaka E; Yuba Y; Sato A; Kuze F
    Exp Lung Res; 1994; 20(4):351-66. PubMed ID: 7988496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lung function and inflammation during murine Pseudomonas aeruginosa airway infection.
    Wölbeling F; Munder A; Kerber-Momot T; Neumann D; Hennig C; Hansen G; Tümmler B; Baumann U
    Immunobiology; 2011 Aug; 216(8):901-8. PubMed ID: 21497410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New approaches to Pseudomonas aeruginosa lower respiratory tract infections.
    Matsumoto K
    Verh K Acad Geneeskd Belg; 1995; 57(2):109-22. PubMed ID: 7571853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerosol treatment with MNEI suppresses bacterial proliferation in a model of chronic Pseudomonas aeruginosa lung infection.
    Woods DE; Cantin A; Cooley J; Kenney DM; Remold-O'Donnell E
    Pediatr Pulmonol; 2005 Feb; 39(2):141-9. PubMed ID: 15633200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemorrhage Attenuates Neutrophil Recruitment in Response to Secondary Respiratory Infection by Pseudomonas Aeruginosa.
    Lee K; Cohen JT; Wilson ZS; Zhao R; Lomas-Neira J; Chung CS; Chen Y; Jamieson AM; Ayala A; Lefort CT
    Shock; 2019 Nov; 52(5):506-512. PubMed ID: 30475329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A murine model of early Pseudomonas aeruginosa lung disease with transition to chronic infection.
    Bayes HK; Ritchie N; Irvine S; Evans TJ
    Sci Rep; 2016 Nov; 6():35838. PubMed ID: 27804985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of alveolar macrophages in the neutrophil-dependent defense system against Pseudomonas aeruginosa infection in the lower respiratory tract. Amplifying effect of muramyl dipeptide analog.
    Ozaki T; Maeda M; Hayashi H; Nakamura Y; Moriguchi H; Kamei T; Yasuoka S; Ogura T
    Am Rev Respir Dis; 1989 Dec; 140(6):1595-601. PubMed ID: 2513762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo.
    Allen L; Dockrell DH; Pattery T; Lee DG; Cornelis P; Hellewell PG; Whyte MK
    J Immunol; 2005 Mar; 174(6):3643-9. PubMed ID: 15749902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutrophils in beige mice secrete normal amounts of cathepsin G and a 46 kDa latent form of elastase that can be activated extracellularly by proteolytic activity.
    Cavarra E; Martorana PA; Cortese S; Gambelli F; Di Simplicio P; Lungarella G
    Biol Chem; 1997 May; 378(5):417-23. PubMed ID: 9191028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutrophil lysosomal dysfunctions in mutant C57 Bl/6J mice: interstrain variations in content of lysosomal elastase, cathepsin G and their inhibitors.
    Gardi C; Cavarra E; Calzoni P; Marcolongo P; de Santi M; Martorana PA; Lungarella G
    Biochem J; 1994 Apr; 299 ( Pt 1)(Pt 1):237-45. PubMed ID: 8166647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roflumilast Increases Bacterial Load and Dissemination in a Model of Pseudomononas Aeruginosa Airway Infection.
    Kasetty G; Papareddy P; Bhongir RK; Egesten A
    J Pharmacol Exp Ther; 2016 Apr; 357(1):66-72. PubMed ID: 26865680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of long-term voluntary exercise wheel running on susceptibility to bacterial pulmonary infections in a mouse model.
    van de Weert-van Leeuwen PB; de Vrankrijker AM; Fentz J; Ciofu O; Wojtaszewski JF; Arets HG; Hulzebos HJ; van der Ent CK; Beekman JM; Johansen HK
    PLoS One; 2013; 8(12):e82869. PubMed ID: 24376599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of PAR2 in murine pulmonary pseudomonal infection.
    Moraes TJ; Martin R; Plumb JD; Vachon E; Cameron CM; Danesh A; Kelvin DJ; Ruf W; Downey GP
    Am J Physiol Lung Cell Mol Physiol; 2008 Feb; 294(2):L368-77. PubMed ID: 18083764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of gender and interleukin-10 deficiency on the inflammatory response during lung infection with Pseudomonas aeruginosa in mice.
    Guilbault C; Stotland P; Lachance C; Tam M; Keller A; Thompson-Snipes L; Cowley E; Hamilton TA; Eidelman DH; Stevenson MM; Radzioch D
    Immunology; 2002 Nov; 107(3):297-305. PubMed ID: 12423305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutrophil mediators, Pseudomonas, and pulmonary dysfunction in cystic fibrosis.
    Meyer KC; Zimmerman J
    J Lab Clin Med; 1993 May; 121(5):654-61. PubMed ID: 8386737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protective effect of endotoxin instillation on subsequent bacteria-induced acute lung injury in rats.
    Jean D; Rezaiguia-Delclaux S; Delacourt C; Leclercq R; Lafuma C; Brun-Buisson C; Harf A; Delclaux C
    Am J Respir Crit Care Med; 1998 Dec; 158(6):1702-8. PubMed ID: 9847256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes.
    Yoo DG; Floyd M; Winn M; Moskowitz SM; Rada B
    Immunol Lett; 2014 Aug; 160(2):186-94. PubMed ID: 24670966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastase and cathepsin G activities are present in immature bone marrow neutrophils and absent in late marrow and circulating neutrophils of beige (Chediak-Higashi) mice.
    Takeuchi KH; McGarry MP; Swank RT
    J Exp Med; 1987 Nov; 166(5):1362-76. PubMed ID: 3681189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of elastase in a mouse model of chronic respiratory Pseudomonas aeruginosa infection that mimics diffuse panbronchiolitis.
    Yanagihara K; Tomono K; Kaneko Y; Miyazaki Y; Tsukamoto K; Hirakata Y; Mukae H; Kadota JI; Murata I; Kohno S
    J Med Microbiol; 2003 Jun; 52(Pt 6):531-535. PubMed ID: 12748275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TNF-α is a key regulator of MUC1, an anti-inflammatory molecule, during airway Pseudomonas aeruginosa infection.
    Choi S; Park YS; Koga T; Treloar A; Kim KC
    Am J Respir Cell Mol Biol; 2011 Feb; 44(2):255-60. PubMed ID: 20448050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.