These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 7988538)
1. Equine hoof function investigated by pressure transducers inside the hoof and accelerometers mounted on the first phalanx. Dyhre-Poulsen P; Smedegaard HH; Roed J; Korsgaard E Equine Vet J; 1994 Sep; 26(5):362-6. PubMed ID: 7988538 [TBL] [Abstract][Full Text] [Related]
2. The effect of frog pressure and downward vertical load on hoof wall weight-bearing and third phalanx displacement in the horse--an in vitro study. Olivier A; Wannenburg J; Gottschalk RD; van der Linde MJ; Groeneveld HT J S Afr Vet Assoc; 2001 Dec; 72(4):217-27. PubMed ID: 12219918 [TBL] [Abstract][Full Text] [Related]
3. In vitro attenuation of impact shock in equine digits. Lanovaz JL; Clayton HM; Watson LG Equine Vet J Suppl; 1998 Sep; (26):96-102. PubMed ID: 9932099 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the damping effect of different shoeing by the measurement of hoof acceleration. Benoit P; Barrey E; Regnault JC; Brochet JL Acta Anat (Basel); 1993; 146(2-3):109-13. PubMed ID: 8470451 [TBL] [Abstract][Full Text] [Related]
5. In vitro transmission and attenuation of impact vibrations in the distal forelimb. Willemen MA; Jacobs MW; Schamhardt HC Equine Vet J Suppl; 1999 Jul; (30):245-8. PubMed ID: 10659261 [TBL] [Abstract][Full Text] [Related]
6. Use of an instrument sandwiched between the hoof and shoe to measure vertical ground reaction forces and three-dimensional acceleration at the walk, trot, and canter in horses. Kai M; Aoki O; Hiraga A; Oki H; Tokuriki M Am J Vet Res; 2000 Aug; 61(8):979-85. PubMed ID: 10951994 [TBL] [Abstract][Full Text] [Related]
7. Time domain characteristics of hoof-ground interaction at the onset of stance phase. Burn JF Equine Vet J; 2006 Nov; 38(7):657-63. PubMed ID: 17228582 [TBL] [Abstract][Full Text] [Related]
8. Compensation for changes in hoof conformation between shoeing sessions through the adaptation of angular kinematics of the distal segments of the limbs of horses. van Heel MC; van Weeren PR; Back W Am J Vet Res; 2006 Jul; 67(7):1199-203. PubMed ID: 16817743 [TBL] [Abstract][Full Text] [Related]
9. Effect of hoof orientation and ballast on acceleration and vibration in the hoof and distal forelimb following simulated impacts ex vivo. McCarty CA; Thomason JJ; Gordon K; Burkhart T; Bignell W Equine Vet J; 2015 Mar; 47(2):223-9. PubMed ID: 24580552 [TBL] [Abstract][Full Text] [Related]
10. The relationship of frog pressure to heel expansion. Colles CM Equine Vet J; 1989 Jan; 21(1):13-6. PubMed ID: 2920694 [TBL] [Abstract][Full Text] [Related]
11. Variation in surface strain on the equine hoof wall at the midstep with shoeing, gait, substrate, direction of travel, and hoof shape. Thomason JJ Equine Vet J Suppl; 1998 Sep; (26):86-95. PubMed ID: 9932098 [TBL] [Abstract][Full Text] [Related]
12. Use of gyroscopic sensors for objective evaluation of trimming and shoeing to alter time between heel and toe lift-off at end of the stance phase in horses walking and trotting on a treadmill. Keegan KG; Satterley JM; Skubic M; Yonezawa Y; Cooley JM; Wilson DA; Kramer J Am J Vet Res; 2005 Dec; 66(12):2046-54. PubMed ID: 16379645 [TBL] [Abstract][Full Text] [Related]
13. Hoof growth between two shoeing sessions leads to a substantial increase of the moment about the distal, but not the proximal, interphalangeal joint. Moleman M; van Heel MC; van Weeren PR; Back W Equine Vet J; 2006 Mar; 38(2):170-4. PubMed ID: 16536388 [TBL] [Abstract][Full Text] [Related]
14. Use of an inertial measurement unit to assess the effect of forelimb lameness on three-dimensional hoof orientation in horses at a walk and trot. Moorman VJ; Reiser RF; Mahaffey CA; Peterson ML; McIlwraith CW; Kawcak CE Am J Vet Res; 2014 Sep; 75(9):800-8. PubMed ID: 25157883 [TBL] [Abstract][Full Text] [Related]
15. Effect of shoeing conditions on hoof dimensions in Icelandic and Warmblood horses. Waldern NM; Kubli V; Dittmann MT; Amport C; Krieg C; Weishaupt MA Vet J; 2020; 259-260():105461. PubMed ID: 32553238 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical analysis of hoof landing and stride parameters in harness trotter horses running on different tracks of a sand beach (from wet to dry) and on an asphalt road. Chateau H; Holden L; Robin D; Falala S; Pourcelot P; Estoup P; Denoix JM; Crevier-Denoix N Equine Vet J Suppl; 2010 Nov; (38):488-95. PubMed ID: 21059050 [TBL] [Abstract][Full Text] [Related]
17. In vivo and in vitro heel expansion in relation to shoeing and frog pressure. Roepstorff L; Johnston C; Drevemo S Equine Vet J Suppl; 2001 Apr; (33):54-7. PubMed ID: 11721569 [TBL] [Abstract][Full Text] [Related]
18. Does 'hacking' surface type affect equine forelimb foot placement, movement symmetry or hoof impact deceleration during ridden walk and trot exercise? Barstow A; Bailey J; Campbell J; Harris C; Weller R; Pfau T Equine Vet J; 2019 Jan; 51(1):108-114. PubMed ID: 29665054 [TBL] [Abstract][Full Text] [Related]
19. Investigation of forelimb hoof wall strains and hoof shape in unshod horses exercised on a treadmill at various speeds and gaits. Bellenzani MC; Merritt JS; Clarke S; Davies HM Am J Vet Res; 2012 Nov; 73(11):1735-41. PubMed ID: 23106458 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the vertical hoof force distribution in the equine forelimb with an instrumented horseboot. Barrey E Equine Vet J Suppl; 1990 Jun; (9):35-8. PubMed ID: 9259803 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]