These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7988549)

  • 1. Asymmetric binding of the 1- and 4-C=O groups of QA in Rhodobacter sphaeroides R26 reaction centres monitored by Fourier transform infra-red spectroscopy using site-specific isotopically labelled ubiquinone-10.
    Brudler R; de Groot HJ; van Liemt WB; Steggerda WF; Esmeijer R; Gast P; Hoff AJ; Lugtenburg J; Gerwert K
    EMBO J; 1994 Dec; 13(23):5523-30. PubMed ID: 7988549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does different orientation of the methoxy groups of ubiquinone-10 in the reaction centre of Rhodobacter sphaeroides cause different binding at QA and QB?
    Remy A; Boers RB; Egorova-Zachernyuk T; Gast P; Lugtenburg J; Gerwert K
    Eur J Biochem; 2003 Sep; 270(17):3603-9. PubMed ID: 12919324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FTIR spectroscopy shows weak symmetric hydrogen bonding of the QB carbonyl groups in Rhodobacter sphaeroides R26 reaction centres.
    Brudler R; de Groot HJ; van Liemt WB; Gast P; Hoff AJ; Lugtenburg J; Gerwert K
    FEBS Lett; 1995 Aug; 370(1-2):88-92. PubMed ID: 7649310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy: assignment of the interactions of each carbonyl of QA in Rhodobacter sphaeroides using site-specific 13C-labeled ubiquinone.
    Breton J; Boullais C; Burie JR; Nabedryk E; Mioskowski C
    Biochemistry; 1994 Dec; 33(48):14378-86. PubMed ID: 7981197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy: symmetry of the carbonyl interactions and close equivalence of the QB vibrations in Rhodobacter sphaeroides and Rhodopseudomonas viridis probed by isotope labeling.
    Breton J; Boullais C; Berger G; Mioskowski C; Nabedryk E
    Biochemistry; 1995 Sep; 34(36):11606-16. PubMed ID: 7547892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The binding sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy: assignment of the QA vibrations in Rhodobacter sphaeroides using 18O- or 13C-labeled ubiquinone and vitamin K1.
    Breton J; Burie JR; Berthomieu C; Berger G; Nabedryk E
    Biochemistry; 1994 Apr; 33(16):4953-65. PubMed ID: 8161557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric binding of the primary acceptor quinone in reaction centers of the photosynthetic bacterium Rhodobacter sphaeroides R26, probed with Q-band (35 GHz) EPR spectroscopy.
    van den Brink JS; Spoyalov AP; Gast P; van Liemt WB; Raap J; Lugtenburg J; Hoff AJ
    FEBS Lett; 1994 Oct; 353(3):273-6. PubMed ID: 7957873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 13C magic angle spinning NMR characterization of the functionally asymmetric QA binding in Rhodobacter sphaeroides R26 photosynthetic reaction centers using site-specific 13C-labeled ubiquinone-10.
    van Liemt WB; Boender GJ; Gast P; Hoff AJ; Lugtenburg J; de Groot HJ
    Biochemistry; 1995 Aug; 34(32):10229-36. PubMed ID: 7640278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy: binding of chainless symmetrical quinones to the QA site of Rhodobacter sphaeroides.
    Breton J; Burie JR; Boullais C; Berger G; Nabedryk E
    Biochemistry; 1994 Oct; 33(41):12405-15. PubMed ID: 7918463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic influence of QA reduction on the IR vibrational mode of the 10a-ester C==O of HA demonstrated by mutations at residues Glu L104 and Trp L100 in reaction centers from Rhodobacter sphaeroides.
    Breton J; Nabedryk E; Allen JP; Williams JC
    Biochemistry; 1997 Apr; 36(15):4515-25. PubMed ID: 9109660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of a semiquinone at the QB site by A- or B-branch electron transfer in the reaction center from Rhodobacter sphaeroides.
    Wakeham MC; Breton J; Nabedryk E; Jones MR
    Biochemistry; 2004 Apr; 43(16):4755-63. PubMed ID: 15096044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unusually strong hydrogen bond between the carbonyl of Q(A) and His M219 in the Rhodobacter sphaeroides reaction center is not essential for efficient electron transfer from Q(A)(-) to Q(B).
    Breton J; Lavergne J; Wakeham MC; Nabedryk E; Jones MR
    Biochemistry; 2007 Jun; 46(22):6468-76. PubMed ID: 17497939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the primary electron acceptor (QA)-site of the bacterial reaction center from Rhodobacter sphaeroides. Binding mode of vitamin K derivatives.
    Hucke O; Schmid R; Labahn A
    Eur J Biochem; 2002 Feb; 269(4):1096-108. PubMed ID: 11856340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational spectroscopy favors a unique QB binding site at the proximal position in wild-type reaction centers and in the Pro-L209 --> Tyr mutant from Rhodobacter sphaeroides.
    Breton J; Boullais C; Mioskowski C; Sebban P; Baciou L; Nabedryk E
    Biochemistry; 2002 Oct; 41(43):12921-7. PubMed ID: 12390017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational differences between the methoxy groups of QA and QB site ubisemiquinones in bacterial reaction centers: a key role for methoxy group orientation in modulating ubiquinone redox potential.
    Taguchi AT; O'Malley PJ; Wraight CA; Dikanov SA
    Biochemistry; 2013 Jul; 52(27):4648-55. PubMed ID: 23745576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the bonding interactions of Q(B) upon photoreduction via A-branch or B-branch electron transfer in mutant reaction centers from Rhodobacter sphaeroides.
    Breton J; Wakeham MC; Fyfe PK; Jones MR; Nabedryk E
    Biochim Biophys Acta; 2004 Jun; 1656(2-3):127-38. PubMed ID: 15178474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquinol formation in isolated photosynthetic reaction centres monitored by time-resolved differential FTIR in combination with 2D correlation spectroscopy and multivariate curve resolution.
    Mezzetti A; Blanchet L; de Juan A; Leibl W; Ruckebusch C
    Anal Bioanal Chem; 2011 Feb; 399(6):1999-2014. PubMed ID: 21061002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the secondary quinone (QB) environment in photosynthetic bacterial reaction centers by light-induced FTIR difference spectroscopy.
    Breton J; Berthomieu C; Thibodeau DL; Nabedryk E
    FEBS Lett; 1991 Aug; 288(1-2):109-13. PubMed ID: 1879543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conformation of the isoprenyl chain relative to the semiquinone head in the primary electron acceptor (QA) of higher plant PSII (plastosemiquinone) differs from that in bacterial reaction centers (ubisemiquinone or menasemiquinone) by ca. 90 degrees.
    Zheng M; Dismukes GC
    Biochemistry; 1996 Jul; 35(27):8955-63. PubMed ID: 8688432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fourier transform infrared study of the primary electron donor in chromatophores of Rhodobacter sphaeroides with reaction centers genetically modified at residues M160 and L131.
    Nabedryk E; Allen JP; Taguchi AK; Williams JC; Woodbury NW; Breton J
    Biochemistry; 1993 Dec; 32(50):13879-85. PubMed ID: 8268163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.