These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 7988863)

  • 1. Pentose transport by the ruminal bacterium Butyrivibrio fibrisolvens.
    Strobel HJ
    FEMS Microbiol Lett; 1994 Oct; 122(3):217-22. PubMed ID: 7988863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for catabolite inhibition in regulation of pentose utilization and transport in the ruminal bacterium Selenomonas ruminantium.
    Strobel HJ
    Appl Environ Microbiol; 1993 Jan; 59(1):40-6. PubMed ID: 8439166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xylose and arabinose utilization by the rumen bacterium Butyrivibrio fibrisolvens.
    Strobel HJ; Dawson KA
    FEMS Microbiol Lett; 1993 Nov; 113(3):291-6. PubMed ID: 8270194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pentose utilization by the ruminal bacterium Ruminococcus albus.
    Thurston B; Dawson KA; Strobel HJ
    Appl Environ Microbiol; 1994 Apr; 60(4):1087-92. PubMed ID: 8017905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pentose utilization and transport by the ruminal bacterium Prevotella ruminicola.
    Strobel HJ
    Arch Microbiol; 1993; 159(5):465-71. PubMed ID: 8484709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stoichiometry of glucose and xylose fermentation in Butyrivibrio fibrisolvens 787.
    Kovar L; Kalachnyuk GI; Savka OG; Duskova D; Marounek M
    Ukr Biokhim Zh (1978); 1996; 68(5):85-9. PubMed ID: 9229858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent metabolism of pentose and hexose sugars by the polyextremophile Alicyclobacillus acidocaldarius.
    Lee BD; Apel WA; DeVeaux LC; Sheridan PP
    J Ind Microbiol Biotechnol; 2017 Oct; 44(10):1443-1458. PubMed ID: 28776272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway.
    Wagner M; Shen L; Albersmeier A; van der Kolk N; Kim S; Cha J; Bräsen C; Kalinowski J; Siebers B; Albers SV
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150511
    [No Abstract]   [Full Text] [Related]  

  • 10. Digestion of cell-wall monosaccharides of ryegrass and alfalfa hays by the ruminal bacteria Fibrobacter succinogenes and Butyrivibrio fibrisolvens.
    Miron J; Ben-Ghedalia D
    Can J Microbiol; 1993 Aug; 39(8):780-6. PubMed ID: 8221378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hierarchy in pentose sugar metabolism in Clostridium acetobutylicum.
    Aristilde L; Lewis IA; Park JO; Rabinowitz JD
    Appl Environ Microbiol; 2015 Feb; 81(4):1452-62. PubMed ID: 25527534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of novel pentose transporters in Kluyveromyces marxianus using a new screening platform.
    Donzella L; Varela JA; Sousa MJ; Morrissey JP
    FEMS Yeast Res; 2021 May; 21(4):. PubMed ID: 33890624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p-Coumaroyl and feruloyl arabinoxylans from plant cell walls as substrates for ruminal bacteria.
    Akin DE; Borneman WS; Rigsby LL; Martin SA
    Appl Environ Microbiol; 1993 Feb; 59(2):644-7. PubMed ID: 8434931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na(+)-dependent transport of D-xylose by bovine intestinal brush border membrane vesicles (BBMV) is inhibited by various pentoses and hexoses.
    Scharrer E; Grenacher B
    J Vet Med A Physiol Pathol Clin Med; 2000 Dec; 47(10):617-26. PubMed ID: 11199210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between rumen bacterial strains during the degradation and utilization of the monosaccharides of barley straw cell-walls.
    Miron J; Duncan SH; Stewart CS
    J Appl Bacteriol; 1994 Mar; 76(3):282-7. PubMed ID: 8157547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on L-arabinose and D-xylose.
    Knoshaug EP; Vidgren V; Magalhães F; Jarvis EE; Franden MA; Zhang M; Singh A
    Yeast; 2015 Oct; 32(10):615-28. PubMed ID: 26129747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-regulation among arabinose, xylose and rhamnose utilization systems in E. coli.
    Choudhury D; Saini S
    Lett Appl Microbiol; 2018 Feb; 66(2):132-137. PubMed ID: 29140539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli.
    Bai W; Tai YS; Wang J; Wang J; Jambunathan P; Fox KJ; Zhang K
    Metab Eng; 2016 Nov; 38():285-292. PubMed ID: 27697562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts.
    Ruchala J; Sibirny AA
    FEMS Microbiol Rev; 2021 Aug; 45(4):. PubMed ID: 33316044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation of glucose and xylose in ruminal strains of Butyrivibrio fibrisolvens.
    Marounek M; Petr O
    Lett Appl Microbiol; 1995 Oct; 21(4):272-6. PubMed ID: 7576521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.