These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 7988891)

  • 1. Alternative strategies of 2-deoxyglucose resistance and low affinity glucose transport in the ruminal bacteria, Streptococcus bovis and Selenomonas ruminantium.
    Cook GM; Russell JB
    FEMS Microbiol Lett; 1994 Oct; 123(1-2):207-12. PubMed ID: 7988891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system.
    Martin SA; Russell JB
    Appl Environ Microbiol; 1986 Dec; 52(6):1348-52. PubMed ID: 3789722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the lactose phosphotransferase system of Streptococcus bovis by glucose: independence of inducer exclusion and expulsion mechanisms.
    Cook GM; Kearns DB; Russell JB; Reizer J; Saier MH
    Microbiology (Reading); 1995 Sep; 141 ( Pt 9)():2261-9. PubMed ID: 7496538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of growth conditions on the Streptococcus bovis phosphoenolpyruvate glucose phosphotransferase system.
    Moore GA; Martin SA
    J Anim Sci; 1991 Dec; 69(12):4967-73. PubMed ID: 1808190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of laidlomycin propionate and monensin on glucose utilization and nutrient transport by Streptococcus bovis and Selenomonas ruminantium.
    Wampler JL; Martin SA; Hill GM
    J Anim Sci; 1998 Oct; 76(10):2730-6. PubMed ID: 9814916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexose phosphorylation by the ruminal bacterium Selenomonas ruminantium.
    Martin SA
    J Dairy Sci; 1996 Apr; 79(4):550-6. PubMed ID: 8744219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The ability of 2-deoxyglucose to promote the lysis of Streptococcus bovis JB1 via a mechanism involving cell wall stability.
    Russell JB; Wells JE
    Curr Microbiol; 1997 Nov; 35(5):299-304. PubMed ID: 9462960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological characterization of Streptococcus bovis mutants that can resist 2-deoxyglucose-induced lysis.
    Bond DR; Tsai BM; Russell JB
    Microbiology (Reading); 1999 Oct; 145 ( Pt 10)():2977-85. PubMed ID: 10537220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch.
    Cotta MA
    Appl Environ Microbiol; 1992 Jan; 58(1):48-54. PubMed ID: 1539992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of extracellular lactate on growth of rumen lactate producers.
    Simunek J; Marounek M
    Arch Tierernahr; 1994; 46(3):277-81. PubMed ID: 7619002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inducer expulsion is not a determinant of diauxic growth in Streptococcus bovis.
    Kearns DB; Cook GM; Russell JB
    Curr Microbiol; 1996 Apr; 32(4):221-4. PubMed ID: 8867462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutrient transport by ruminal bacteria: a review.
    Martin SA
    J Anim Sci; 1994 Nov; 72(11):3019-31. PubMed ID: 7730197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catabolite regulation in a diauxic strain and a nondiauxic strain of Streptococcus bovis.
    Kearns DB; Russell JB
    Curr Microbiol; 1996 Oct; 33(4):216-9. PubMed ID: 8824165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of thymol on ruminal microorganisms.
    Evans JD; Martin SA
    Curr Microbiol; 2000 Nov; 41(5):336-40. PubMed ID: 11014870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase.
    Curtis SJ; Epstein W
    J Bacteriol; 1975 Jun; 122(3):1189-99. PubMed ID: 1097393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deoxyribonuclease activity in Selenomonas ruminantium, Streptococcus bovis, and Bacteroides ovatus.
    Al-Khaldi SF; Durocher LL; Martin SA
    Curr Microbiol; 2000 Sep; 41(3):182-6. PubMed ID: 10915204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-affinity, high-capacity system of glucose transport in the ruminal bacterium Streptococcus bovis: evidence for a mechanism of facilitated diffusion.
    Russell JB
    Appl Environ Microbiol; 1990 Nov; 56(11):3304-7. PubMed ID: 2268149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of the glucose enzymes II of the sugar phosphotransferase system in the regulation of adenylate cyclase by glucose in Escherichia coli.
    Harwood JP; Gazdar C; Prasad C; Peterkofsky A; Curtis SJ; Epstein W
    J Biol Chem; 1976 Apr; 251(8):2462-8. PubMed ID: 177417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose transport in Streptococcus mutans: preparation of cytoplasmic membranes and characteristics of phosphotransferase activity.
    Schachtele CF
    J Dent Res; 1975; 54(2):330-8. PubMed ID: 1054344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Glucose and Starch on Lactate Production by Newly Isolated Streptococcus bovis S1 from Saanen Goats.
    Chen L; Luo Y; Wang H; Liu S; Shen Y; Wang M
    Appl Environ Microbiol; 2016 Oct; 82(19):5982-9. PubMed ID: 27474714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.