BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 7988897)

  • 1. Sulfonate-sulfur utilization involves a portion of the assimilatory sulfate reduction pathway in Escherichia coli.
    Uria-Nickelsen MR; Leadbetter ER; Godchaux W
    FEMS Microbiol Lett; 1994 Oct; 123(1-2):43-8. PubMed ID: 7988897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative aspects of utilization of sulfonate and other sulfur sources by Escherichia coli K12.
    Uria-Nickelsen MR; Leadbetter ER; Godchaux W
    Arch Microbiol; 1994; 161(5):434-8. PubMed ID: 8042907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli.
    Kawano Y; Onishi F; Shiroyama M; Miura M; Tanaka N; Oshiro S; Nonaka G; Nakanishi T; Ohtsu I
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):6879-6889. PubMed ID: 28756590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli.
    Nakatani T; Ohtsu I; Nonaka G; Wiriyathanawudhiwong N; Morigasaki S; Takagi H
    Microb Cell Fact; 2012 May; 11():62. PubMed ID: 22607201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation of thiol contents in plants.
    Höfgen R; Kreft O; Willmitzer L; Hesse H
    Amino Acids; 2001; 20(3):291-9. PubMed ID: 11354605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The path of unspecific incorporation of selenium in Escherichia coli.
    Müller S; Heider J; Böck A
    Arch Microbiol; 1997 Nov; 168(5):421-7. PubMed ID: 9325431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfonate-sulfur metabolism and its regulation in Escherichia coli.
    van der Ploeg JR; Eichhorn E; Leisinger T
    Arch Microbiol; 2001 Jul; 176(1-2):1-8. PubMed ID: 11479697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Saccharomyces cerevisiae serine O-acetyltransferase in cysteine biosynthesis.
    Takagi H; Yoshioka K; Awano N; Nakamori S; Ono Bi
    FEMS Microbiol Lett; 2003 Jan; 218(2):291-7. PubMed ID: 12586406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cloning and functional characterization of cDNAs encoding cysteine synthase and serine acetyltransferase that may be responsible for high cellular cysteine content in Allium tuberosum.
    Urano Y; Manabe T; Noji M; Saito K
    Gene; 2000 Oct; 257(2):269-77. PubMed ID: 11080593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning of the cys genes (cysC, cysD, cysH, cysI, cysJ, and cysG) responsible for cysteine biosynthesis in Escherichia coli K-12.
    Tei H; Murata K; Kimura A
    Biotechnol Appl Biochem; 1990 Apr; 12(2):212-6. PubMed ID: 2158792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sac mutants of Chlamydomonas reinhardtii reveal transcriptional and posttranscriptional control of cysteine biosynthesis.
    Ravina CG; Chang CI; Tsakraklides GP; McDermott JP; Vega JM; Leustek T; Gotor C; Davies JP
    Plant Physiol; 2002 Dec; 130(4):2076-84. PubMed ID: 12481091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathways of assimilative sulfur metabolism in Pseudomonas putida.
    Vermeij P; Kertesz MA
    J Bacteriol; 1999 Sep; 181(18):5833-7. PubMed ID: 10482527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional analysis of the Bacillus subtilis cysK and cysJI genes.
    van der Ploeg JR; Barone M; Leisinger T
    FEMS Microbiol Lett; 2001 Jul; 201(1):29-35. PubMed ID: 11445163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of Cysteine.
    Kredich NM
    EcoSal Plus; 2008 Sep; 3(1):. PubMed ID: 26443742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serine acetyltransferase from Arabidopsis thaliana can functionally complement the cysteine requirement of a cysE mutant strain of Escherichia coli.
    Murillo M; Foglia R; Diller A; Lee S; Leustek T
    Cell Mol Biol Res; 1995; 41(5):425-33. PubMed ID: 8867790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Escherichia coli CysZ is a pH dependent sulfate transporter that can be inhibited by sulfite.
    Zhang L; Jiang W; Nan J; Almqvist J; Huang Y
    Biochim Biophys Acta; 2014 Jul; 1838(7):1809-16. PubMed ID: 24657232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preventing hair loss in mice.
    Ward KA; Leish Z; Bonsing J; Nishimura N; Cam GR; Brownlee AG; Nancarrow CD
    Nature; 1994 Oct; 371(6498):563-4. PubMed ID: 7935788
    [No Abstract]   [Full Text] [Related]  

  • 18. Riding the sulfur cycle--metabolism of sulfonates and sulfate esters in gram-negative bacteria.
    Kertesz MA
    FEMS Microbiol Rev; 2000 Apr; 24(2):135-75. PubMed ID: 10717312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis.
    Lie TJ; Godchaux W; Leadbetter ER
    Appl Environ Microbiol; 1999 Oct; 65(10):4611-7. PubMed ID: 10508097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two enzymes together capable of cysteine biosynthesis are encoded on a cyanobacterial plasmid.
    Nicholson ML; Gaasenbeek M; Laudenbach DE
    Mol Gen Genet; 1995 Jun; 247(5):623-32. PubMed ID: 7603442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.